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Abstract—The increasing momentum of service-oriented ar-
chitecture has led to the emergence of divergent delivered
services, where service selection is meritedly required to obtain
the target service fulfilling the requirements from both users
and service providers. Despite many existing works have exten-
sively handled the issue of service selection, it remains an open
question in the case where requests from multiple users are
performed simultaneously by a certain set of shared candidate
services. Meanwhile, there exist some constraints enforced
on the context of service selection, e.g. service placement
location and contracts between users and service providers. In
this paper, we focus on the QoS-aware service selection with
constraints from a fairness aspect, with the objective of achiev-
ing max-min fairness across multiple service requests sharing
candidate service sets. To be more specific, we formulate this
problem as a lexicographical maximization problem, which is
far from trivial to deal with practically due to its inherently
multi-objective and discrete nature. A fairness-aware algorithm
for concurrent service selection (FASS) is proposed, whose basic
idea is to iteratively solve the single-objective subproblems
by transforming them into linear programming problems.
Experimental results based on real-world datasets also validate
the effectiveness and practicality of our proposed approach.

Keywords-service selection; Quality of Service (QoS); max-
min fairness; selection constraints; concurrent service execu-
tion.

I. INTRODUCTION

Nowadays, service selection has become a key building
block of Service-Oriented Architecture (SOA) along with
the prevalence of services computing technology. It implies
the process of gaining target service from various candidate
services, whose objective is to match both functional and
non-functional requirements. With the increasing scale of
web services, candidate services with equivalent function-
ality are simultaneously provided for selection, but vary in
non-functional properties (i.e., Quality of Service (QoS)).

The common goal of QoS-aware service selection is to
elect the target service with the optimal end-to-end QoS,
which is inherently an optimization problem. There have
been a great number of existing works [1], [2] proposing
efficient service selection schemes, especially for web and
cloud systems. While most existing work in the literatures

∗Jiwei Huang is the corresponding author. Email: huangjw@cup.edu.cn.

primarily deals with finding the single target service from
candidate services for one user, however, little focus has
been on the service selection scenario with multiple service
requests addressed by users simultaneously [3]. Multiple ser-
vice requests submitted by users are required for concurrent
service running at the service platform.

For this case, service requests proposed by divergent users
may have various constraints. For example, when mobile
communication users request for establishing links with the
base station (BS), there have been the selection rule (e.g.
location-aware [4]) restricting the range of deliverable BS.
In the fields of content distribution, content users attributable
to multiple Internet Service Providers have hard constraints
about the Content Distribution Netoworks that they can
access to [5]. Besides, users and service providers reach an
agreement in contract, specifying that users can merely use
the paid services. Therefore, the constraints should be fully
considered especially for concurrent service selection.

Furthermore, multiple service requests may share the
limited amount of candidate services with the identical
functional capacities but different QoS levels. Given this,
multiple service requests are inherently competing for the
candidate services with each other for the purpose of obtain-
ing a higher QoS. Therefore, it necessitates a fairness-aware
selection mechanism when pooling the candidate services.

In this paper, we put forward a fairness-aware service
selection scheme, addressing the problem of multiple QoS-
aware service selection with constraints. Our service selec-
tion approach is carefully designed from the perspective of
service ecosystem [6]. On the one hand, users are usually
willing to gain a better service with a higher QoS at a
reasonable price. On the other hand, each service request
gains a better service with a higher QoS without degrading
the QoS of other service requests, which ensures the fairness
of concurrent service selection. It is helpful for holding all
the existing users in the ecosystem and attracting more users
from the outside with the fair policy. With the growing scale
of users, service providers will gain more revenue motivating
them to develop services with higher QoS. In this way, the
loop of sustainable SOA development is built up.

Highlights of our contributions are as follows. We firstly
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Figure 1: Overview of Service Selection Model.

outline our basic model of multiple service selection with
constraints and formulate the max-min fairness (MMF)
optimization objective as a lexicographical maximization
problem. In virtue of the multi-objective and discrete char-
acteristics of the lexicographical problem, it is often a puzzle
to work out the exact solution. Through extensively investi-
gating the structure of lexicographical problem, we find out
the properties of separable convex objective and totally uni-
modular linear constraints. Thanks to these two properties,
we transform the lexicographical maximization problem into
a range of equivalent linear programming (LP) subproblems.
The target services for multiple service requests through
finite iterations of LP, where MMF is achieved. Finally, our
proposed approach is validated through experiments.

II. PROBLEM FORMULATION

A. Concurrent Service Selection Model with Constraints
We consider a set of multiple service requests N =

{1, ..., N} submitted by users to a web service platform for
concurrent execution, as depicted in Fig. 1. Substaintial can-
didate services are released by third-party service providers.
Given the QoS preference for each service request, the
service broker is responsible for finding out the personalized
target service from the numerous released services.

Without loss of generality, it is assumed that the candidate
service sets from M third-party service providers can be
categorised into M = {C1, ...CM}. The candidate set
contains a variety of services j ∈ Ci, where 1 ≤ i ≤ M .
As discussed above, the candidate set are sharable with
constraints amongst multiple service request. The service
selection constraint for service request n is indicated by
the constraint set Sn. The element i ∈ Sn implies the
enabled types of services which service request n can elect.
From the standpoint of service providers, the set of service
requests authorized by provider i is characterized with Ni.
For simplicity, response time is applied as the only QoS
criteria in this paper. For each service j in Ci, the response
time is measured as the value of Qi,j .

The selection of candidate service is formulated by a
binary variable xni,j , where 1 means the jth service in the

candidate set Ci is elected by the service request n and
0 indicates the opposite. Decision variables of the service
request n is represented by xn = {xni,j |i ∈ Sn, j ∈ Ci},
and all of variables xni,j forms the solution space Θ. The
execution time τn for service request n is calculated as (1).

τn =
∑

i∈Sn

∑

j∈Ci

xni,jQi,j (1)

Given diverse QoS requirements from users, a tailored
Service Level Agreement (SLA) is highly required for a
flexible service selection scheme [7]. To be more specific,
an SLA is defined by the QoS committed by the service
provider and associated payment which the user is obliged
to afford. In this work, we assume that the user pays for the
service in the pattern of pay-per-use. The pricing model of
pay-per-use has been widely accepted in the field of cloud
service [8], and so is in the case for service computing [9].
Customers wish to be served by a better service with a
higher QoS even though they are reasonably asked for more
money. In the pay-per-use model, the payment for service
request n mainly consists of two parts, one of which is
the basic payment an for launching the service which the
another is the maximum extra bonus bn for delivering a
better service . A baseline of QoS criteria (i.e., response

time) Q
(ref)
n is addressed here, reflecting the user n’ basic

QoS requirements. If user n obtains a service outperforming

the QoS baseline Q
(ref)
n , then a basic payment an and an

extra bonus should be charged. Otherwise, the user n will
pay at most an without any extra bonus. Therefore, the
user n’s payment is calculated as (2) when selecting the
jth candidate service from the candidate set Ci.

πn
i,j = an + bn · (1− Qi,j

Q
(ref)
n

· xni,j) (2)

Basic payment an is positively correlated to the severity of

QoS requirements (i.e., QoS baseline Q
(ref)
n ). Extra bonus is

considered to be linearly increasing with QoS improvements
[10]. The user n’s payment is expressed by (3).

πn = an + bn · (1−
∑

i∈Sn

∑

j∈Ci

Qi,j

Q
(ref)
n

· xni,j) (3)

B. Lexicographical Problem Formulation Achieving MMF
Since the candidate services released by service providers

are shared by multiple service requests waiting for concur-

rent execution, our design purpose is to take each service

request into consideration and motivate all of them to obtain

the target service with high and acceptably fair QoS. To be

more specific, our service selection scheme applies max-min

fairness (MMF) across multiple service requests.

Definition 1 (Max-Min Fairness): A service selection

scheme satisfies max-min fairmess (MMF), if it is

impossible to increase the ith lowest payment across N
service requests even though removing the service requests

whose payment is strictly higher than the ith lowest

payment, note that i ∈ N .

In the context of concurrent service selection, we seeks to

maximize the lowest payment amongst the multiple request-

s,then to optimize the second lowest without impacting the
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Algorithm 1 FASS: Service Selection across Multiple Requests
with Max-Min Fairness.

1: Initialize ˜N ← N ;

2: while ˜N �= ∅ do
3: x← LP (A,B,Q(ref),Q,Θ);

4: xn∗ ← argmin
n∈ N

πn ;

5: Fix the variable subset xn∗ ;

6: Set xn
i,j ← 0, in the case of arbitrary n �= n∗ ;

7: Θ← Θ\{xn
i,j |n = n∗}

8: Θ← Θ ∩ {xn
i,j |xn∗

i,j = 1, i ∈ Sn∗ , j ∈ Ci} ;

9: ˜N ← ˜N\{n∗};
10: end while
11: return xn

i,j , ∀n ∈ N , i ∈ Sn, j ∈ Ci;

previous one, and so forth. Until all the service requests have

been optimized, the procedure of service selection will be

terminated with an MMF service selection scheme obtained.

In the area of multi-criteria optimization, lexicographical

techniques [11] grants the highest optimization priority to

the most important objective, matching the interests of max-

min fairness. As a result, our service selection scheme based

on max-min fairness can be rigorously formulated as a

lexicographical maximization problem, theoretically defined

as the objective function (4) subject to (5)-(7). In the sce-

nario of our work, there exist two main types of constraints

which are user constraints and provider constraints. The user

constraints (5) ensure that each customer’s request should

elect just only one service from available candidates of her

own. The provider constraints (6) imply that different user

has to select different services from service providers.
lexmax
xn
i,j∈Θ

π = (π1, π2, ......, πN ) (4)

subject to, ∑

i∈Sn

∑

j∈Ci

xni,j = 1, ∀n ∈ N (5)

∑

n∈Ni

xni,j ≤ 1, ∀i ∈M, ∀j ∈ Ci (6)

xni,j ∈ {0, 1}, ∀n ∈ N , i ∈ Sn, j ∈ Ci (7)

The objective in the lexicographical maximization prob-

lem is a payment vector π ∈ R
N , each element of which

represents the payment of a specified user submitting the ser-

vice request n. Optimal π∗ is lexicographically no smaller

than any feasible π. It signifies that the first smallest element

of π∗ (i.e., the lowest payment across multiple requests)

should be the maximum amongst all feasible solutions π. In

the case of all π with the same lowest payment, the second

lowest payment in π∗ is applied for maximization. The rest

is in a similar fashion. Through solving this lexicographical

problem iteratively, an optimal service selection plan is

worked out achieving the max-min fairness.
III. COMPUTING SERVICE SELECTION PLAN

A. Iterative MMF Optimization Framework
An iterative MMF optimization framework namely FASS

is put forward in the first step. Both payment parameters

and QoS baselines are tracked for each service request.
The service assignments for all N service requests are
iteratively accomplished one after another according to the
non-decreasingly order of service payments. In the first
round of iterations, the service request n∗ with the lowest
payment is prioritized for service selection and payment
optimization, treated as a subproblem implemented by a
Linear Programming (LP) problem in the Section III-B.

Once the candidate service optimizing the service request
n∗’s payment is picked out, there are several settings ready
for the next iteration round. In brief, we freeze the service
assignment of optimized request n∗. First, the family of
decision variables {xni,j |n = n∗} holds as unchanged,
and lowers the dimension of the solution space Θ by one.
Second, the solution space Θ should be also reduced by the
decision variables relevant to the selected candidate services,
formulated by {xni,j |xn

∗
i,j = 1, i ∈ Sn∗ , j ∈ Ci}. After the

service request with the lowest payment having been opti-
mized, the next round is launched aimed to optimizing the
service request with the second lowest payment. Preparing
for the afterwards round, we conduct the settings of solution
space Θ analogous to what is done at the first round.

Such iterative process repeats until all the service requests
obtain the target service of her own. The iteration algorithm
terminates, indicating the arise of concurrent service selec-
tion scheme with max-min fairness. It should be noticed that
the service selection scheme is obtained through determin-
istic finite iterative rounds. Algorithm 1 illustrates pseudo-
code for concurrent service selection achieving MMF.
B. LP Transformation Towards the Lowest Payment Maxi-
mization

The lexicographical optimization problem (4) is an integer
optimization with multi-objectives, which is NP-hard to
solve the problem directly. Given that, we resolve the prob-
lem (4) into N single-objective subproblems optimizing the
lowest payment. The optimization goal of single-objective
subproblem is formulated as (8).

max
xn
i,j∈Θ

min
n∈N

(an + bn × (1− τn

Q
(ref)
n

)) (8)

Thanks to the possible value for xni,j confined to {0, 1},
the execution time τn for service request n, previously
formulated by (1), can be also expressed as (9).

τn = max
i∈Sn,j∈Ci

xni,jQi,j (9)

Then, let (9) substituted into the objective function (8),
then we have the single-objective problem represented in
another non-linear form (10), subject to (5)-(7).

max
xn
i,j∈Θ

min
n∈N ,i∈Sn,j∈Ci

an + bn · (1− Qi,j

Q
(ref)
n

· xni,j) (10)

Integral Optimum Guarantee. A linear programming
problem will yield an optimal solution in integers, if it has
a totally unimodular (TU) coefficient matrix [12]. In our
problem domain, the coefficient matrix of constraints (5)
and (6) is carefully investigated and verified the property of
total unimodularity, in order to further determine whether
the deletion of the integrality constriants (7) impacts on the
optimal service selection of the problem (4).

Lemma 1: The matrix formed by the coefficients of con-
straints (5) and (6) is total unimodular.

The proof of Lemma 1 can be found in a longer version
of this paper [13]. It follows that our problem has an integral
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optimum as long as any optimum exists, providing the
legality basis of linear relaxation on the integer constraints
(7). The integer constraints get relaxed as (11).

xni,j ∈ R
+, ∀n ∈ N , i ∈ Sn, j ∈ Ci (11)

Equivalent Convex Objective. The optimal service selec-
tion scheme of the problem (10) can be attained by solving
the following lexicographical problem as (12). The common
goal of this problem is to maximize the lowest payment
across multiple service request, which is specifically the
minimum element in �. Thus, it shows that the optimal
decision variable x∗ derived from the problem (12) is
equivalent to the optimal solution of the problem (10).

lexmax
xn
i,j∈Θ

� = (πn
i,j |n ∈ N , i ∈ Sn, j ∈ Ci) (12)

In order to eventually supply a linear objective function, a
tailored separable convex objective function ξ(�) is defined
as (13), served as an intermediate transformation of objective
function. The kth element of � is labeled by �k.

ξ(�) =

|�|∑

k=1

|�|−�k =
K∑

k=1

K−�k (13)

Lemma 2: ξ(·) reverses the original partial order of lexi-
cographically no greater than (�), which is mathematically
represented as �(x∗) ��(x) ⇔ ξ(�(x∗)) ≤�(x).

The proof of Lemma 2 can be found in a longer version
of this paper [13]. It follows that

lexmax
xn
i,j∈Θ

� ⇐⇒ min
xn
i,j∈Θ

ξ(�) =
∑

n∈N

∑

i∈Sn

∑

j∈Ci

K−πn
i,j (14)

where ξ(�) is a summation of the term Kπn
i,j which is

a convex function in terms of the single variable xni,j .
Therefore, solving the problem (10) is equivalent to solving
the following problem (13) with constraints (5), (6) and (11).

min
xn
i,j∈Θ

∑

n∈N

∑

i∈Sn

∑

j∈Ci

K
−[an+bn×(1− Qi,j

Q
(ref)
n

·xn
i,j)]

(15)

LP Transformation. Given the properties of separable con-
vex objective and totally unimodular linear constraints hold-
ing as true, we introduce the λ-technique [14] for optimality-
equivalent Linear Programming (LP) transformation from
the problem (19) in order to obtain the target service
selection scheme with high efficiency. In our problem, each
convex function K−πn

i,j is transformed with λ-technique into
another form ψn

i,j(x
n
i,j), formulated as follows.

ψn
i,j(x

n
i,j) =

∑

p∈{0,1}
K
−[an+bn×(1− Qi,j

Q
(ref)
n

·p)]
λn,pi,j (16)

The domain of decision variable xni,j is migrated from a
discrete space {0, 1} to a continuous positive real space
by the means of traversing each possible value xni,j ∈

{0, 1}, and newly introducing a couple of weighted variables

λn,0i,j , λ
n,1
i,j ∈ R

+ subject to (17) and (18).

λn,0i,j + λn,1i,j = 1, ∀n ∈ N , i ∈ Sn, j ∈ Ci (17)

xni,j = λn,1i,j , ∀n ∈ N , i ∈ Sn, j ∈ Ci (18)
Jointly considering the linear relaxation on the integer

constraints, the linear programming problem is eventually
obtained as (19).

min
x,λ

∑

n∈N

∑

i∈Sn

∑

j∈Ci

K0 · λn,0i,j +K1 · λn,1i,j (19)

subject to (5)-(6), (17)-(18) and

xni,j , λ
n,0
i,j , λ

n,1
i,j ∈ R

+ ∀n ∈ N , i ∈ Sn, j ∈ Ci

K0 = K−(an+bn), K1 = K
−[an+bn×(1− Qi,j

Q
(ref)
n

)]

Theorem 1: An optimal service selection scheme derived
from the problem (19) coincides with an optimal scheme
derived from the problem (4).

The proof of Theorem 1 can be found in a longer
version of this paper [13]. From now on, the optimal service
selection scheme across multiple service requests maximiz-
ing the lowest payment can be computed with efficient
LP algorithms (e.g., Simplex Algorithm) and solvers (e.g.,
CPLEX [15]).

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup
We respectively set the amount of service providers and

service requests as M = 9 and N = 10. The candidate
service associated with the QoS value originates from WS-
Dream dataset [16], which measures response time for 5,825
types of real-world web services from disparate locations.
Nine amongst 5,825 types of web services are randomly
chosen as service providers. At the user side, 10 users simul-
taneously make service requests, each of which corresponds
to a broker responsible for regulating the service selection
process. The privilege for service selection is restricted to
specified service providers. Our simulator is implemented in
C++, invoking IBM CPLEX [15] to solve our LP problems.

B. Experimental Results
To extensively investigate the optimality and fairness of

our proposed algorithm, we tune the providers’ pricing
policy (i.e., an+bn) to evaluate the payment deviation across
multiple requests and overall revenue of service providers,
depicted in Fig. 2 and Fig. 3. The pricing policy is set as
8 levels from 1 to 8, where a higher pricing level indicates
that the candidate service is more highly priced.

Our proposed algorithm, referred to as FASS, is compared
with two baselines - Revenue Maximization and Randomized.
The Revenue Maximization algorithm refers to the algorithm
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whose objective is to maximize the overall revenue including
all of users’ payments, ignoring the variation of service
assignment amongst users, while the Randomized algorithm
randomly selects a service for execution. The Randomized
algorithm are executed over 1,000 runs.

On the one hand, smaller payment deviation amongst
individuals guarantees the fairness of concurrent service
selection. Thanks to the notion of max-min fairness, our
FASS algorithm is at the minimum payment deviation. The
Randomized algorithm takes the second place, whereas the
Revenue Maximization algorithm performs with the maxi-
mum payment deviation, much less for fairness guarantee.
On the other hand, service providers which attain higher
revenue due to offering services gain higher profits. Revenue
Maximization algorithm optimizes the overall revenue from
all service requests, served as the optimal baseline in our
comparison study. The Randomized algorithm acquires the
least revenue because of its blind selecting behavior. Our
FASS algorithm does not top the list, nevertheless, there
simply exist tiny gaps away from the baseline of Revenue
Maximization. Notwithstanding a little sacrifice of revenue
gains, our FASS algorithm achieves the fairness guarantee
across multiple service requests.

Furthermore, we evaluate the practicality of our proposed
algorithm by measuring the execution time of various al-
gorithms under different problem scales. Since it is sharply
time consuming to solve lexicographical problem (4), the
running times of integer programming (i.e. xni,j ∈ {0, 1})
and our FASS algorithm is elected to conduct comparative
analysis. The running times of both algorithms are demon-
strated in Fig. 4, with the number of decision variables from
450 to 4,500. Each data point representing the execution
time is averaged over 20 runs. Under the growth of problem
scale, the execution time of both algorithms are kept as
nearly linear increase. Compared with integer programming,
our FASS algorithm performs much faster over 153% to
258%. The procedure of service selection for FASS can
be accomplished below tens or hundreds of milliseconds.
It follows that our FASS algorithm is efficient in practice.

V. CONCLUSIONS AND FUTURE WORK

Fairness is an important issue in service selection when
multiple users share multiple candidate services in a ser-
vice ecosystem. We study the QoS-aware service selection
problem with constraints from a globally fairness viewpoint.
With the objective of achieving max-min fairness across
the entire system, we formulate the service selection as a
lexicographical maximization problem. An efficient algorith-
m is designed to solve such problem with acceptably low
overhead by introducing λ-technique and linear relaxation.

There are several avenues for future work. Dynamic
service composition scheme might be designed based on
the basic idea proposed in this paper. Experimental results
obtained from real-life environments should provide us with
more insights of the user/system behaviors and algorithm
optimization. Pricing schemes and gaming among service
providers/users in real-world systems are interesting prob-
lems for researchers in this community to study.
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