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Abstract—With the growing popularity of the Internet of 
Things (IoT), energy efficiency has been a critical concern during 
the design and development of IoT service systems. Meanwhile, 
edge computing has drawn significant attention as a burgeoning 
computing paradigm. This paper studies the energy efficiency 
issue of IoT systems by proposing a joint scheme of resource 
allocation and task scheduling under the edge computing 
paradigm. Specifically, dynamic processes of the IoT services and 
system are formulated by generalized queueing network models, 
based on which quantitative analyses of performance and energy 
consumption are conducted. The resource management and task 
scheduling are formulated by Markov Decision Process (MDP), 
which can balance the tradeoff between energy costs and QoS 
requirements. To attack the challenge of MDP search space 
explosion due to the large scale of IoT systems, Ordinal 
Optimization (OO) techniques are applied to the MDP algorithms, 
which are able to significantly narrow the search of MDP by 
slightly softening the optimization objective to a good enough 
subset. Finally, we conduct simulation experiments based on real-
world IoT data. Evaluations and comparisons demonstrate that 
our approach is effective and efficient in practice.

Keywords—Internet of Things (IoT); resource management; 
task scheduling; energy efficiency; Markov Decision Process; 
Ordinal Optimization.

I. INTRODUCTION

The Internet of Things (IoT) is a burgeoning technique that 
connects interrelated computing devices over the network
enabling their abilities to interact and cooperate with each other 
to create new applications and reach common goals [1]. With 
the rapid development of IoT, the huge computational workload 
for handling massive data generated by sensors and IoT devices 
has become a big challenge. Real-time data handling and 
information exchanges should be guaranteed, which neverthe-
less requires enhanced computational capacity at the edge of 
networks. For this case, traditional cloud-centric computational 
paradigm cannot accommodate itself to unpredictable sensing 
data explosion at the edge, thereby lacking the abilities of time-
constrained IoT applications. 

To attack this challenge, a novel computational paradigm
namely edge computing has emerged, which extends the cloud 

resources to the edge of network and makes them being 
managed in a distributed way. It allows the computations to be 
performed at the edge of the network, from which sensors’ data 
originates. Since many of the computational tasks can be 
completed near the data sources, the computation overload can 
be balanced in a distributed way and meanwhile the 
communication delay can be reduced [2]. Besides performance, 
energy efficiency is another hot topic in the globe. On the one 
hand, appropriate resource management according to dynamic 
workload has proved to be one of the most effective ways for 
improving energy efficiency in distributed computing systems 
[3]. On the other hand, it has been shown that the energy 
consumption brought by computations can be reduced if IoT 
devices with few computational resources upload their 
computation-intensive workload to the high-performance 
clouds [4]. Nevertheless, such uploading involves additional 
data transmission, consuming energy at the same time. 
Therefore, how to allocate the tasks between edges and clouds 
in order to attain optimal energy efficiency should be well 
studied accordingly.

There has already been a few research works to address the 
issue of task scheduling in IoT systems with edge computing 
paradigm. However, they only deal with the issue of task 
scheduling in edge-cloud systems, and do not simultaneously 
take into account resource management of servers [5-7]. A 
complete resource management framework in large scale 
computing systems exhibits high dimensions in state or action 
spaces. Deng at al. [8] proposed an analytical framework for 
edge-cloud systems to conduct the task scheduling balancing 
power consumption and delay, but the scheduling algorithm 
neglects significant scheduling times which high dimensions in 
action spaces bring about in large scale computing systems.

To fill these gaps, we make an attempt at improving the
energy efficiency by jointly considering resource management
and task scheduling in IoT systems which can be organized in
edge computing paradigm. We theoretically model an edge-
cloud system by queueing theory, and provide mathematical
analyses of the performance and energy consumption. Based on
the quantitative analyses, we design an algorithm of resource 
management and task scheduling based on Markov Decision
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Process (MDP) for obtaining tradeoff decisions between energy 
costs and performance metrics.. Fast scheduling is of much 
importance to guarantee user experience. To this end, we take 
advantage of Ordinal Optimization (OO) techniques in order to 
remarkably decrease the search space. The efficacy of our 
approach is validated by simulation experiments based on real-
life data collected from IoT systems.

II. SYSTEM MODEL

A. Sensor Hub
Data fusion has been widely applied in edge computing 

especially for sensor-based applications [9]. It is highly required 
to integrate multiple data from different sensors representing the 
same real-world object into a consistent and accurate 
representation. To facilitate such process, sensor hubs are 
designed and deployed at the front-end portal of the edge-cloud 
system. Besides integrating sensor data synchronously, sensor 
hubs are able to reduce the energy consumption by powering
themselves down when idle [10].

In most of the sensor hubs, data is firstly buffered and 
waiting for further processing by the microcontroller unit (MCU) 
until a certain amount of data has been accumulated in the buffer 
[11]. The sensing data generated by sensors is processed in batch 
by the sensor hub. Therefore, a sensor hub can be theoretically 
formulated by a specialized queueing model with batch service, 
illustrated by Figure 1.    

It has been shown that the task arrival at application layer of 
a networked system can be approximately formulated by 
Poisson distribution [12], and the service time of each request is
assumed to be exponentially distributed. We let ߣ௜ denote the 
individual task arrival rate while ̂ߤ௜ is the batch service rate. The 
arrival of the sensor request batches can be approximately 
identified as a Poisson arrival process [13], and the arrival rate 
of the sensor request batches can be expressed by ߣመ௜ = ௜ߣ ܾ௜⁄ .
The utilization of the sensor hub can be calculated by ߩ௜ = መ௜ߣ ⁄௜ߤ̂ .
The average response time of a batched request (i.e., waiting 
time and service time included) can be calculated using Little’s 
Law, expressed as (1),

௜ܶோௌ = E[ݍ௜]ߣመ௜ = ܾ௜ ∙ E[ݍ௜]ߣ௜                              (1)
where E[ݍ௜] is the average queue length expressed as (2).E[ݍ௜] = ௜1ߩ  − ௜ߩ                                         (2)

Referring to the literature [14], the power consumption of 
computer circuits is divided into static power and dynamic 
power. The former one is caused by leakage currents and is 
independent of clock frequency and occupancy rates, while the 
later is related to circuit activity and mainly depends on clock 
frequency, occupancy rates and I/O status. Hence, the power of 
an edge server i can be formulated as follows. ݌௜ = ௜ߪ   ቀ݌௜(௦௧௔௧௜௖) + ௜ߩ   ∙ ௜(ௗ௬௡)ቁ                    (3)݌
where ߪ௜ indicates the on/off state of the server (1 means the 
server is on and 0 means off);  ݌௜(௦௧௔௧௜௖) , ௜(ௗ௬௡)݌ and ௜ߩ 
respectively denote the static power and the dynamic power and 
the utilization of the sensor hub.
B. Edge and Cloud Server Cluster

An edge-cloud computing system is well-organized in a 
hierarchy consisting of edge servers and cloud servers with 

different computational capacities, from the core cloud server to 
the geographically located edge servers. Both edge and cloud 
servers are clusters including several computers interconnected 
by LANs, and requests are scheduled among them.

The computing and scheduling amongst servers can be 
modeled by an M/M/n queuing system, demonstrated by Figure 
2. It is assumed that the server cluster j consists of ௝ܰ physical 
servers, in which ௝݊ (0 ≤ ௝݊ ≤ ௝ܰ) servers are powered on.Let ߣ௝ be the arrival rate of requests at the server cluster ݆, and ߤ௝ be 
the service rate of a single server in the cluster ݆. Then, the 
utilization of each server in the cluster j is ߩ௝ = ௝ߣ ௝݊ ∙ ⁄௝ߤ . With 
Little’s Law, the average response time of a request at the server 
cluster j can be formulated by (4),

௝ܶோௌ = Eൣݍ௝൧ߣ௝                                      (4)
where Eൣݍ௝൧ is the average queue length expressed as (5).

Eൣݍ௝൧ = ௝݊ߩ௝ + ௝൫ߩ ௝݊ߩ௝൯௡ೕ
௝݊! ൫1 − ௝൯ଶߩ ቎ ෍ ൫ ௝݊ߩ௝൯௞݇! +௡ೕିଵ

௞ୀ଴
൫ ௝݊ߩ௝൯௡ೕ

௝݊ ! ൫1 − ௝൯቏ିଵߩ  (5)
The power of the cluster j can be formulated as follows.݌௝ =  ෍ ൬ߪ௞ ቀ݌௞(௦௧௔௧௜௖) + ௞ߩ ∙ ௞(ௗ௬௡)ቁ൰ேೕ݌

௞ୀଵ             (6)
Here, ߪ௞ denotes the on/off state of the ݇௧௛ server in the cluster; ݌௞(௦௧௔௧௜௖), ௞(ௗ௬௡)݌ and ௞ߩ respectively indicate the static power, 
the dynamic power and the utilization of the ݇௧௛ server.
C. Edge-Cloud System

Figure 3 describes a hierarchical infrastructure of an edge-
cloud system. In the outmost layer  are the sensor hubs together
with sensors, which are the origin of data. Relevant pieces of 
primitive data from multiple sensors are combined into a single 
one which provides a more precise description at the sensor hub. 
Blow is the edge layer, where the edge cluster connects the 
corresponding sensor hubs and sensors, and process some basic 
computational tasks. The services departing from sensor hubs 
are separately input into a set ܯ of edge cluster through high 
speed networking. We label the ݆௧௛ edge cluster by ߝ௝ , while ܪ௜൫ఌೕ൯൫1 ≤ ݅ ≤ ௝൯ܫ denotes the ݅௧௛ sensor hub subordinating to ߝ௝ . A maximum of ௝ܰ servers can perform simultaneously for 
the edge cluster ߝ௝, and the actual amount of performing servers 
within ܯ edge clusters is specified as an M-tuple ࢔ =൫݊ଵ, … , ௝݊, … , ݊ெ൯ . The central cloud cluster (labeled by c) is 
positioned in the core layer of the edge-cloud system. There are 

Queue

Batch  

  Size: b

Departures
CPU

Sensor Hub

Task Arrivals

Fig. 1. Batch processing model for sensor hubs.

Task Arrivals Departures

        N Servers

Queue Server 1

Server n

Fig. 2. Parallel computing model of an edge or cloud cluster.
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totally ௖ܰ servers deployed at the cloud cluster, and ݊௖ indicates 
the number of power-on servers at the cloud. 

Tasks are performed in alliance with edge and cloud servers. 
The bypass probability ,ଵߚ൫ = ࢼ … , ,௝ߚ … , ெ൯ߚ characterizes the 
task allocation between the edge and cloud layer, and the 
communication distance between the edge cluster ߝ௝ and cloud 
cluster is ௝ܦ . Task scheduling is applied to determine whether 
the task is proceeded at the edge layer or bypass to the cloud 
layer. An M-tuple ࢗ = ൫ݍଵ, … , ,௝ݍ … , ெ൯ݍ represents the queue 
length within ܯ edge clusters, which will be applied to the state 
formulation in the MDP problems defined later. Notice that 1 ௝ݍ≥ ≤ ܳ௝ , and ܳ௝ is the maximum queue length in the edge 
cluster  ߝ௝.

As mentioned in the previous subsections, sensor hubs are 
modeled by M/M/1 queuing systems, and the edge and cloud 
clusters care formulated by M/M/n queuing models. Therefore, 
a queuing network model for the edge-cloud system is 
established. With Burke's Theorem, it has been widely accepted 
that the departure process of an M/M/1 or M/M/n system is also 
Poisson with the same departure rate as the arrival one. Since the 
arrivals of batched services approximately conform to Poisson 
distribution [13] and the service times are exponentially 
distributed, it is reasonable to assume the departures of the 
services from the sensor hubs are also Poisson.

Let ߣ௜൫ఌೕ൯
and ̂ߤ௜൫ఌೕ൯

respectively indicate the individual task 

arrival and the batch service rate at the senor hub ܪ௜൫ఌೕ൯
, and ܾ௜൫ఌೕ൯

is the batch size. The arrival rate of the sensor request 

batches can be calculated with መ௜൫ఌೕ൯ߣ = ௜൫ఌೕ൯ߣ ܾ௜൫ఌೕ൯ൗ . The arrival 
rate ߣ௝ of the edge cluster ܧ௝ can be expressed as (7), and the 
service rate of each edge server is labeled as ߤ௝. The service rate 
of cloud server is ߤ௖; the arrival rate ߣ௖ can be calculated by (7).ߣ௝ = ൫1 − ௝൯ߚ ∙ ෍ መ௜൫ఌೕ൯ூೕߣ

௜ୀଵ ௖ߣ          = ௝ߚ ∙ ෍ መ௜൫ఌೕ൯ூೕߣ
௜ୀଵ         (7)

In order to carry on  the analysis and optimization, a discrete-
time Markov chain (DTMC) is embedded into the CTMC. 
Suppose that each epoch has the length of time period τ equally, 
and the state transition cannot occur simultaneously. The 
embedded DTMC has the transition probability,݌௤ೕ→௤ೕାଵ = ௝ߣ  ቀ1 − ݁ି ∑ (ఒೖା௤ೖఓೖ)ಾೖసభ தቁ ൫1 − ∑௝൯ߚ ௞ߣ) + ௞)  ெ௞ୀଵߤ௞ݍ                    (8)

௤ೕ→௤ೕିଵ݌ = ௝ߤ௝ݍ ቀ1 − ݁ି ∑ (ఒೖା௤ೖఓೖ)ಾೖసభ தቁ∑ ௞ߣ) + ௞)ெ௞ୀଵߤ௞ݍ                                 (9)
௟௢௢௣݌ = ݁ି ∑ (ఒೖା௤ೖఓೖ)ಾೖసభ த + ௝ߚ௝ߣ ቀ1 − ݁ି ∑ (ఒೖା௤ೖఓೖ)ಾೖసభ தቁ∑ ௞ߣ) + ௞)ெ௞ୀଵߤ௞ݍ (10)
where ݌௤ೕ→௤ೕାଵ and  ݌௤ೕ→௤ೕିଵ denote the one-step transition 
probability, and ݌௟௢௢௣ presents the probability maintaining state 
invariance.

Stationary computation time at the sensor hub and edge or 
cloud server cluster, which are separately labeled as ௜ܶ൫ఌೕ൯

and ௝ܶ
or ௖ܶ, can be calculated by (1) and (4). Then, the data transfer 
time from the edge cluster ߝ௝ to the cloud cluster ܿ can be 
formulated by ௝்ܶ ோ = ௝ܦ  ∙ ݐ where ,ݐ is the data transfer time per 
unit communication distance.

Power consumed by the sensor hub and the server cluster, 
which are respectively indexed by ௜ܲ൫ఌೕ൯

and ௝ܲ , can be 
calculated according to (3) and (6). Besides, the power
consumption due to data transfer can be split into two portions. 
One is a fixed cost for channel acquirement and MAC layer 
control negotiation, and the other is packet size-dependent 
energy consumption [15]. Because the number of served tasks is 
approximately proportional to the number of packages being 
sent out, the energy consumed by data transmission between the ݅௧௛ layer and ݆௧௛ layer can be estimated by (11), where݌(ௗ௬௡) and ݌(௦௧௔௧௜௖) are constant coefficients.݌௝் ோ = (ௗ௬௡)݌ ∙ ௝ߣ ∙ ௝ߚ ∙ ߬ + (11)                (௦௧௔௧௜௖)݌

III. APPROACH

Since the scale of edge-cloud system is extremely huge and 
speed of schedule is finite, it is essential to purpose an efficient 
scheduling strategy. Thus, we propose a task scheduling scheme 
with the allocation of resources by applying the thoughts of OO. 
A. Reward Model

In order to put forward the scheduling scheme, we firstly 
present a reward model on the edge-cloud system. Since the 
senor hub usually performs in a stable periodic working state
while is typically related to the specialized task, power 
consumption and response time at the sensor hub are kept as 
constant. Thus, our scheduling scheme mainly focuses on the 
task allocation between the edge and cloud layer. The first 
objective is to minimize the power consumption from resources 
consumption. As mentioned earlier in Section Ⅱ, the power 
consumption is divided into two parts, one of which is from 
computation at the sensor hub and the edge or cloud cluster 
while another is power consumed by the data transfer. Therefore, 
the total power consumption can be defined as follows.ܲ௦௬௦ = ෍  ൫ ௝ܲ + ௝்ܲ ோ൯ெ

௝ୀଵ + ௖ܲ                         (12)
The second objective is to meet the upper bound of the 

response time ௌܶ௅஺. At the edge layer, we assume that the reward 
is closely related to the transient response time. At the cloud site, 
however, since the cloud is usually equipped with adequate 
resource and thus much more stable on performance with 
various workload, stationary response time is treated as the 
variable to estimate the computing time at the cloud layers. 
Considering the time taken by computation at the edge and cloud 

Fig. 3. Overall architecture for an edge-cloud system.
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servers and bypass transmission, the total time spent for a task 
can be formulated as (13). The conditions where the response 
time exceeds ௌܶ௅஺ should be eliminated, so the response time is 
treated as the pruning indicator in the reward model. Note that 
tasks are regarded as homogenous with the same ௌܶ௅஺.ܶ௦௬௦ = ෍ ௝ߣ ∙ ቌݍ௝ ∙ ൫1 − ௝൯௝݊ߚ ∙ ௝ߤ + ௝ߚ ∙ ൫ ௝்ܶ ோ + ௖ܶ൯ቍெ

௝ୀଵ ෍ ௝ெߣ
௝ୀଵ൙     (13)

Thus, the reward model is set up based on the optimization 
of energy consumption and the constraint of response time. We 
conduct task scheduling with the resource allocation between 
the edge layer and the cloud layer, where the probability of 
bypass transmission and the number of power-on machines are 
decision variables. In the reward function, both time and energy 
elements are normalized, formulated as follows.ܴ =  ௌܶ௅஺ − ܶ௦௬௦

ௌܶ௅஺ / ܲ௦௬௦
௠ܲ௔௫                           (14)

B. MDP Formulation
A primary scheduling strategy using Markov Decision 

Process (MDP) is given in this part. A standard MDP problem 
is defined as the following 5 ingredients.

Decision Epoch. A decision timeslot is indexed by ݊ ∈ ℕା.
Each  decision timeslot takes ߬ time units. In correspondence, 
the decision is executed at ݐ =  ߬, 2߬, 3߬, 4߬, … ….

State and State Space. We assume that the cloud is stable 
on performance with various workload, and thus decision-
making is conducted at the edge layer. The state ܵ(݊) is defined 
by the M-tuple ݍ = ൫ݍଵ, … , ,௝ݍ … , ெ൯ݍ , which represents the 
workload in  ܯ edge clusters. 

Action and Action Space. Energy efficiency is achieved by 
allocating the computational workload between the edge and 
cloud layer and charging the number of power-on servers. 
Interlayer workload allocation is characterized as the probability 
of bypass transmission ࢼ. The number of power-on servers at 
the edge layer is formulated by ࢔ while the number of power-on
servers at the cloud is ݊௖. Thus, actions ܽ௡ can be expressed by ࢼ × ࢔ × ݊௖, and all candidate actions form the action space .ܣ

Rewards Function. Let the reward function ݎ(ܵ(݊), ܽ௡)
defined by the reward at each timeslot, as ݎ(ܵ(݊), ܽ௡) = ௡ݎ ,
where ݎ௡ is the reward derived from (14) at the timeslot of ݊.

Objective Value Function. Let ߨ denote the policy 
specifying the determined actions at a decision timeslot. Then 
our objective is to find out the best policy ߨ∗ ∈ Π with the 
largest expected total discounted reward formulated as (15).ܸగ∗ = max గ߃ ൝ limே→ஶ ෍ ௡ିଵߛ ∙ ,(݊)ܵ)ݎ ܽ௡)ே

௡ୀଵ ൡ        (15)
According to the definition of the Bellman Equations, the 

objective equation can be also expressed recursively as (16).

௡ܸ൫ܵ(݊)൯ = max௔೙∈஺ ቐ ,(݊)ܵ)ݎ ܽ௡) ߛ+ ෍ ,(݊)ܵ|ᇱݏ)݌ ܽ௡) ௡ܸାଵ(ݏᇱ)௦ᇲ∈ௌ ቑ     (16)
where ߛ ∈ (0, 1) is a discount factor. The probability of state 
transition is defined in (8)-(10).

In spite of the high computational complexity to find the best 
actions for MDP problems using value iteration or policy 
iteration, it will take immense computation prices to work out 
the exact solution in the large scale edge-cloud system. 

Therefore, it is necessary to reduce the selection range of the 
action space in MDP.

C. An OO-Based Practical Solution
Borrowing the ideas of Ordinal Optimization (OO) [16], a 

scheme for tasks and resources scheduling is proposed as 
follows. In order to reduce time and space significantly, a coarse 
but efficient model is usually applied, which estimates the 
performance criteria of candidate solutions in the decision-
making space ܵ̅. The decision-making space ܵ̅ here is defined 
by the action space ܣ in our MDP problem. Then the number ݏ of selected candidates is derived, given OPC type and error 
level. Our coarse model and how to select the required solutions 
will be introduced in detail subsequently. 

Coarse Model. Differing from the refined model (i.e., MDP 
optimization), our coarse model ignores the future earnings and 
simply focuses on the current reward. In other words, we use the 
reward function (14) at each timeslot to estimate the 
performance criteria of scheduling scenarios. If  ݎ௡ < 0, then the 
estimated value is set as 0.

Selecting the Scheduling Scenarios. Let us assume that 
there are s scheduling scenarios selected as the action space of 
MDP optimization. Here, s will be determined by the TSECS 
algorithm below. Empirically, the alignment probability ஺ܲ is 
set as 0.95, which is actually a high value. Based on the theory 
of OO, s generally depends on the nature of specific problems 
(i.e., Ordered Performance Curves (OPCs) and the error level). 

Shapes of OPCs demonstrate the distribution of solutions in 
the solution domain ܵ̅, which indicate the quality of solutions 
(i.e., whether the good enough solutions are easy to obtain in the 
optimization problem). Based on the equation of (14), we can 
apply ݎ௘ to estimate the type of OPCs. Assuming that the size of ܵ̅ is ഥܰ, all the scenarios in ܵ̅ is pre-evaluated using the coarse 
model, and the estimated values of these scenarios are sorted in 
ascending order ݎ௘[ଵ], ,௘[ଶ]ݎ … … , .௘[ேഥ]ݎ The ordered estimated 
value can be normalized into the range [0,1].ݎ(ݔ௜) = ௘[௜]ݎ  − ௘[ே]ݎ௘[ଵ]ݎ − ௘[ଵ]ݎ ௜ݔ   ,    = ݅ − 1 ഥܰ − 1 ݅ ݎ݋݂      = 1 … … ഥܰ        (17)

There are generally three kinds, which are flat, neutral and 
flat. If the OPC is flat, few good solutions are in the solution 
domain and the good enough scenarios are hard to obtain. To the 
contrary, if the OPC is steep, there are many good solutions 
totally and a smaller s is sufficient to cover the desired solutions.

Error level is another main factor which determines the value 
of ݏ. It refers to the rate of divergence between estimated values 
and true values. In optimization for MDP, optimized policy 
depends more on the order of rewards while the concrete reward 
values are of little importance in the optimum iterative 
procedure. Therefore, the error derives from the partial disorder 
of reward values. 

The estimated reward values of ഥܰ candidates can be 
formulated by a vector ࢋࡾ = ቀݎ௘(ଵ), ,௘(ଶ)ݎ … … , ௘(ேഥ)ቁݎ while the 
true ones obtained by Bellman objective equation (16) are given 
as another vector ࡾ = ൫ݎ(ଵ), ,(ଶ)ݎ … … ,  ൯. Here, error level( ேഥ)ݎ
can be measured as the vectorial angle of ࢋࡾ and ࡾ. Let ݂݀݅ ௞݂ = 1 − cos〈(࢑)ࢋࡾ, 〈(࢑)ࡾ = 1 − ்(࢑)ࢋࡾ ∙ ฮଶ(࢑)ࢋࡾฮ(࢑)ࡾ × ଶ‖(࢑)ࡾ‖     (18)
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represent the normalized difference for the ݇௧௛ scheduling 
scenario, where (࢑)ࢋࡾ and (࢑)ࡾ respectively denote the estimated 
and true values of the ݇௧௛ scheduling scenario. The error level 
can be gained by the maximum of ݂݀݅ ௞݂ among the ഥܰ
candidates, which can be calculated as݉ܽݔଵஸ௞ஸேഥ ቐ1 − ்(࢑)ࢋࡾ ∙ ฮଶ(࢑)ࢋࡾฮ(࢑)ࡾ × ଶቑ                     (19)‖(࢑)ࡾ‖

If the error level is less than 0.5, it is considered to be a small 
one with s much smaller. It indicates medium one when 0.5 ≤error level < 1, while error level ≥ 1 represents a large one 
while a larger s is required to cover the good solutions

With OPC type and error level defined, the number ݏ of 
selected scheduling scenarios can be obtained based on OO 
techniques. Alignment level ݇ and the size of good enough 
subset ݃ can be freely regulated, while the alignment probability ஺ܲ is normally set as 0.95. The number ݏ of selected scheduling 
scenarios can be calculated as (20)-(23), where ܼ௢, ,ߩ ߛ and ߟ
are correspondingly defined [16]. We apply (20), (21) and (23) 
to map our parameters to the parameters in [16] to eliminate the 
inconsistency caused by differences between the scale of 
solution space. The main steps of our TSECS algorithm are 
described in Algorithm 1.݇ᇱ = ,1}ݔܽ݉ ⌈10000 ∙ ݇ ഥܰ⁄ ⌉}                     (20)݃ᇱ = ,1}ݔܽ݉ ⌈10000 ∙ ݃ ഥܰ⁄ ,ᇱ(݇ᇱݏ(21)                     {⌈ ݃ᇱ) = ݁௓೚(݇ᇱ)ఘ(݃ᇱ)ఊ + ݏ(22)                    ߟ = ⌈ ഥܰ ∙ ᇱݏ 1000⁄ ⌉                                (23)

Algorithm 1 Task Scheduling of Edge-Cloud System (TSECS)
Input: Decision-making space of scheduling scenarios ࡿഥ, the 
number of good enough solutions ࢍ, alignment level ࢑
Output: Determined action ࢔ࢇ.
1: Calculate the reward values of all the scheduling scenarios 
in ࡿഥ using coarse model
2: Estimate the OPC type based on (17)
3: Estimate the normalized error level based on (19)
4: Calculate the number ࢙ of selected scenarios based on (20)-
(23), and the theory of OO ensures that ࢙ scheduling scenarios 
contains at least ࢑ good enough scheduling scenarios with 
probability no less than 0.95
5: Use the iterative algorithm for MDP optimization to obtain 
the determined action ࢔ࢇ within the selected s scheduling 
scenarios
6: Return the determined action ࢔ࢇ.

IV. EVALUATION

A. Experimental Setup
In order to evaluate the validity and efficacy of our TSECS 

algorithm, we conduct experiments simulating an edge-cloud 
system where two edge clusters affiliate with one cloud cluster 
and each edge cluster receives task requests from senor hubs. 
Task requests are generated according to the workload trace 
from the T-Drive trajectory dataset. The T-Drive dataset collects 
the GPS trajectories of 10,357 taxies within the city of Beijing 
during a period of one week in 2008 [17,18]. We randomly 
select 10 taxis and aggregate their arrivals, which simulates the 
edge server gathering data from subordinate sensor hubs. With 
the intensive study of the arrival patterns, the 

arrival is approximate to a procedure of Poisson arrival. The 
cumulative distribution function (CDF) of the aggregated 
arrivals at one of edge clusters is demonstrated as Figure 4, and 
the arrival process at another edge cluster is conducted with the 
similar manner. Therefore, the T-Drive dataset can be applied in 
our analyses presented in the previous sections, in order to make 
evaluations in reality. The period ߬ of each decision timeslot is 
set to be 20 seconds, and the workload trace is selected as the 
segment for 15,000 secs. Therefore, there are 750 decision
timeslots in our simulation. The number of requests arriving in 
the edge-cloud system over timeslots is shown in Figure 5.
B. Experimental Results

Figure 6 shows the OPC, from which it can be seen that the
OPC type is steep. It implies that good enough scheduling 
scenarios are easier to obtain, and fewer scheduling scenarios 
should be selected within the universal set of candidate solutions. 
We also estimate the error level of scheduling scenarios and 
obtain the normalized error as 0.5789 according to (19), which 
corresponds to a medium level. The OPC and the error level 
indicate that our TSECS algorithm can be effective and efficient.

We evaluate the effectiveness of our approach by comparing 
our TSECS algorithm with two other algorithms: (1) Load-
balanced algorithm, where the requests are dispatched to edge 
or cloud servers based on the serving capacity, while the 

Fig. 4. CDF of interarrival times
for an edge cluster.

Fig. 6. Order performance curve.

Fig. 8. Power consumption under 
different algorithms.

TABLE Ⅰ. AVERAGE RESPONSE TIME OF DIFFERENT ALGORITHMS

ௌܶ௅஺
(sec)

Algorithms Response Time (sec)
TSECS Load-balanced Best Effort

8.00 7.67 7.16 7.59

Fig. 5. T-Dive workload trace.

Fig. 7. Reward values under 
different algorithms.

Fig. 9. Comparison of execution 
time and reward values.

850

Authorized licensed use limited to: University of Exeter. Downloaded on October 25,2023 at 23:08:13 UTC from IEEE Xplore.  Restrictions apply. 



resource management is the same as our TSECS algorithm; and 
(2) Best Effort algorithm, where all of servers are switched on 
and keep constantly running as long as the corresponding queue 
is not empty, while we use the same method as our TSECS 
algorithm for task scheduling.

Figure 7 demonstrates the reward value of the edge-cloud 
system under different algorithms. It can be seen that our TSECS 
algorithm achieves the highest reward value amongst the three
algorithms, which verifies the effectiveness of our algorithm.
The Load-balanced algorithm achieves higher reward value than
those of the Best Effort algorithm, since the Best Effort 
algorithm consumes the maximum power energy whereas the
response time differences amongst the three algorithms are
minimal. Power consumption and response time costs will be 
introduced subsequently. As regards the energy costs, Figure 8 
compares the power consumption amongst the three algorithms.
Our TSECS algorithm is the most energy efficient. The Best 
Effort algorithm switches all of servers on, which consequently 
produces the largest power consumption. In terms of the 
response time, all of three algorithms meet the demand of SLA 
(i.e., ௌܶ௅஺). Only slight differences exist in response time. Table 
Ⅰ lists the average response time under the three algorithms
amongst which our TSECS algorithm has the longest response 
time. Notwithstanding a little sacrifice of response time, our 
TSECS algorithms achieves the most energy efficient.

Furthermore, we also validate the efficiency of our TSECS 
algorithm by measuring the execution time and comparing 
reward values with the traditional MDP iterative algorithm. 
Figure 9 compares the execution time and reward values 
between the two approaches. With the scale expansion of server 
cluster, the growth of execution time outperforms the 
exponential increase. It also evidently shows that there are 
significant quantitative differences between these two 
approaches, where the execution time of our TSECS algorithm 
is within 100 seconds, while the traditional MDP iterative 
methodology takes much more time beyond orders of magnitude. 
The difference between the estimated reward values and the 
accurate reward values is extremely small. 

V. CONCLUSION

This paper studies the performance and energy issue
simultaneously in IoT systems. We firstly put forward a 
modeling approach of energy-aware performance evaluation for 
an edge-cloud IoT system. Then, we propose the TSECS 
algorithm for task scheduling and resource allocations, making 
tradeoff decisions between energy costs and performance 
metrics. In order to make our approach more effective, we 
introduce OO techniques to significantly promote the efficiency 
especially in large scale systems. Finally, the efficacy of our 
scheme is validated by experimental results from simulations 
based on real-life IoT data.

There are several avenues for future work. The models can 
be further specified according to different types of real-life IoT 
systems. Besides, detailed mathematical analysis of the TSECS 
algorithm should be provided to evaluate the efficiency of our 
algorithm theoretically. Moreover, the scheduling algorithm will 
be designed more carefully to be accustomed to various task 
arrivals other than an established distribution.
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