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Abstract—With the increasing prevalence of online services
mounted on IoT devices, edge computing gains significant
momentum over conventional cloud-centric architecture. Edge
servers are geographically deployed in a distributed manner
nearby IoT devices, which not only frees online services from
the high hardware requirement but also sharply reduces network
latency experienced by IoT users. Recent works have extensively
studied the problem of edge resource management and request
scheduling to achieve high Quality of Service (QoS) with low
latency, but there has been little focus on Quality of Experience
(QoE) that an edge resource allocation scheme brings about.
In this article, we study the Edge Resource Allocation (ERA)
problem across multiple service requests with the objective of
overall QoE maximization, which has non-polynomial compu-
tational complexity. To attack the NP-hardness of solving the
ERA problem, we adopt a game-theoretic approach to formulate
the ERA problem as a potential game ERAGame which admits
a Nash Equilibrium (NE). Then, we novelly present a decentral-
ized algorithm namely QoE-DEER to find an NE solution which
equivalently maximizes the overall QoE as the ERA problem.
Finally, the performance and convergence of our algorithm is
evaluated both theoretically and experimentally, which indicates
its significant advantages over the state-of-the-art approaches.

Index Terms—Edge computing, quality of experience (QoE),
scheduling, resource allocation, game theory.

I. INTRODUCTION

W ITH the growing popularity of Internet of Things (IoT),
a wide variety of IoT devices, including mobile phones,

wearable devices, sensors, etc., pervade every aspect of peo-
ple’s life. The rapid growth of IoT devices promotes the
sophistication of software services, especially for the online
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services [1], [2] which need to interacting information with
upstream servers in an efficient manner. Given this, the tra-
ditional cloud-centric paradigm is called for an evolution
towards a burgeoning computing architecture namely edge
computing [3], [4]. Unlike the monolithic architecture of cloud
computing, edge servers are geographically deployed in close
proximity to diversified IoT devices, and service providers
place their online services on edge servers to interact with
IoT users in real time. In this way, processing capabilities of
IoT devices can be considerably augmented by nearby edge
servers. In addition to this, numerous service requests from IoT
devices can be efficiently processed in a decentralized manner
by geo-distributed edge severs, therefore sharply reducing the
network congestion caused by massive IoT service requests.
Taking it by and large, edge computing significantly boosts the
processing efficiency of IoT service requests, with the overall
service latency including computational and network latency
broadly reduced. Edge computing has been perceived as a
promising technical solution for the IoT application scenario.

Edge resource management is a critical research issue
in edge computing [5], [6], which jointly considers request
scheduling and resource allocation on edge servers. Although
many previous works have thoughtfully studied on the edge
resource management problem, there still exist several research
avenues for further in-depth study. Firstly, since various IoT
users1 propose their service requests from separate geographi-
cal locations [7], edge servers are thereupon deployed at varied
regions based on the service popularity of each geographical
district [8]. For this reason, a centralized resource allocation
scheme, such as [9]–[17], cannot accommodate itself to the
large-scale distributed edge computing environment. Instead,
it necessitates a decentralized implementation which effec-
tively supports the distributed edge resource management.
Secondly, several existing studies on edge computing have
explored the resource management problem with a specified
Quality-of-Service (QoS) optimization objective, such as, cost
efficiency [18], [19], service latency minimization [9], energy
efficiency [12], [13], revenue maximization [14], [20], etc.
Nevertheless, the edge resource management scheme consid-
ering the impact of Quality of Experience (QoE) still needs
further extensive investigations.

QoE is widely perceived as a user-centric indicator
which evaluates the user’s satisfaction when experiencing
a software service [21]. As defined by the International

1In this article, we speak interchangeably of an IoT device and an IoT user.

2332-7731 c© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Exeter. Downloaded on October 25,2023 at 11:33:46 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-8688-1026
https://orcid.org/0000-0001-5220-6703
https://orcid.org/0000-0001-5406-8420
https://orcid.org/0000-0003-2160-2839


1060 IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. 8, NO. 2, JUNE 2022

Telecommunication Union (ITU-T), QoE generally repre-
sents “the overall acceptability of an application or ser-
vice subjectively perceived by the end-user”. Therefore, with
more services and applications developed according to the
human-centered design, service providers gradually place
greater importance on the QoE improvement. In contrast to
many QoS-driven resource allocation methods, a QoE-aware
resource allocation approach can directly strengthen the per-
ceived quality by users, thereby more effectively consolidating
the user loyalty and reducing the service relinquish rate. As
for the edge computing environment, each edge server typ-
ically has limited computational resources [22], [23]. Thus,
it becomes even more essential to elaborately distribute edge
resources amongst IoT users, making the most users’ interest
fulfilled. An effective QoE-aware edge resource management
scheme is exactly anticipated to better optimize the utilization
of limited edge resources to improve the overall user satis-
faction. It emphatically prevents each IoT user from greedily
occupying excessive edge resources [16], [24]. The additional
edge resources allocated beyond one’s requirement contribute
very little towards further improving its own user satisfaction,
but undertake the cost of downgrading the service satisfaction
of other IoT users instead.

In this article, we put forward a decentralized QoE-aware
resource allocation scheme for edge computing. To be specific,
we think of the QoE-aware Edge Resource Allocation (ERA)
problem from the perspective of service providers who lease
edge resources to serve their own IoT users. We adopt a fine-
grained edge resource management strategy to solve the ERA
problem, attentively studying the amount of edge resources
partitioned for each IoT service request served at a shared edge
server. Through conducting the overall QoE maximization
across multiple IoT users, our ERA scheme can enhance the
user’s engagement and loyalty towards service providers. In
the considered scenario, multiple IoT users concurrently sub-
mit service requests and compete against each other for limited
edge resources. We formulate the ERA problem which deter-
mines each IoT service request’s target edge server together
with the amount of edge resources for allocation. Arising
from the NP-hardness [25] of our ERA problem and the
inherent nonlinearity of QoE functions, it is with great compu-
tational intractability to solve the ERA problem in a classical
centralized manner.

Considering the computational challenge, we adapt
ERAGame, a game-theoretical approach to find out the solu-
tion of our ERA problem in a decentralized way. Each IoT
user is modeled as a strategic player who makes independent
decision on resource allocation with the purpose of maxi-
mizing its own QoE. In this way, ERAGame alleviates the
burden of centralized optimization through enabling each IoT
user to individually determine their own edge resource allo-
cation, while the collective objective of QoE maximization is
sufficiently guaranteed. Benefited from the distributed nature
of ERAGame, a decentralized ERA algorithm namely QoE-
DEER is carefully designed to find out a Nash Equilibrium
(NE) of ERAGame. Our QoE-DEER algorithm is theoreti-
cally proved to provide a solution equivalent to the centralized
one for the ERA problem, within the finite decision iterations.

Thanks to its decentralized implementation, our QoE-DEER
algorithm demonstrates substantial performance and scalabil-
ity in the large-scale distributed edge computing environment,
making itself applicable in realistic scenarios. The original
contributions of this article include:

1) We formulate the QoE-aware Edge Resource Allocation
(ERA) problem as a potential game [26] termed
ERAGame, which aims to achieve overall QoE
maximization. Among the non-unique Nash Equilibrium
(NE) solutions, an edge resource preemption rule is incor-
porated into ERAGame, making the ERAGame converge
to the NE solution with the optimal overall QoE.

2) Based on the formulation of ERAGame, a decentral-
ized ERA algorithm named QoE-DEER is developed,
while a cooperative messaging mechanism is designed
to make the QoE-DEER algorithm implementable in real-
ity. The performance and convergence of our QoE-DEER
algorithm are both theoretically proved and analyzed.

3) Our decentralized QoE-DEER algorithm is evalu-
ated through simulations based on the realistic EUA
dataset [27] by using the iFogSim [28] toolkit. The experi-
mental results demonstrate that our QoE-DEER algorithm
outperforms the state-of-the-art QoS and QoE-aware
approaches.

The rest of this article is organized as follows. In
Section II, we investigate the related work. In Section III,
we introduce our system model. In Section IV, we
present the QoE model for edge computing, based on
which the QoE-aware ERA problem is formulated. Then,
Section V depicts the game-theoretical design of ERAGame.
In Section VI, we develop a QoE-aware decentralized
ERA algorithm named QoE-DEER, and then theoretically
analyzes its algorithmic convergence and performance. In
Section VII, we conduct simulations to evaluate our approach.
In Section VIII, we conclude our work and look ahead future
directions.

II. RELATED WORK

With the increasing momentum of IoT technology and
applications, edge computing has gradually been a widely-
focused research problem, especially the resource management
problem in edge computing environment. Thus far, many
existing works have already investigated the edge resource
management problem, respectively in the two aspects of com-
putation offloading and edge resource allocation (abbr., ERA).
In terms of the computation offloading problem [9]–[11],
[18], [19], it simply studies selecting which of IoT service
requests are served at edge servers, regardless of internal
resource partition within the edge server. But for the ERA
problem [12]–[14], [16], [17], [20], [29], [30], it further deter-
mines how many edge resources are partitioned for each
IoT service request that is served at a shared edge server.
Comparatively speaking, the study on ERA problem takes a
more fine-grained edge resource management strategy than
the computation offloading problem. As listed in Table I,
we categorize and compare some representative related works
according to a set of criteria. Interested readers may refer to
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TABLE I
COMPARISON OF DIFFERENT EDGE RESOURCE MANAGEMENT APPROACHES

this comparative table and learn more about the corresponding
references in details.

1) Computation Offloading Problem: From the perspec-
tive of edge infrastructure providers (e.g., T-Mobile, and
AT&T), it basically focuses on the design of computation task
scheduling or service caching approach, aimed to improve the
service efficiency of edge infrastructure providers. Here, the
internal resource allocation scheme within the edge server is
seldom addressed. Ma et al. [9] proposed a cooperative ser-
vice caching and workload scheduling algorithm for service
latency minimization in mobile edge computing, which was
designed on the basis of water filling and Gibbs sampling.
Hong et al. [18] utilized the game-theoretical approach to
present a distributed multi-hop computation offloading scheme
in the IoT-edge-cloud environment, with the objective of min-
imizing the computation cost. He et al. [19] formulated the
computation task scheduling process in edge computing as a
potential game, where the corresponding approximation ratios
for cost efficiency and user-incentive maximization were theo-
retically provided. Song et al. [10] put forward a QoE-driven
edge service caching algorithm for the Internet of Vehicles
based on deep reinforcement learning, where the correspond-
ing QoE function was carefully defined according to the
specific application scenario. He et al. [11] evaluated the
QoE metric with the Mean Opinion Score (MOS) and then
developed a QoE-aware content caching method in IoT-edge
networks, where the MOS was commonly applied as a typical
measure of QoE metric.

2) Edge Resource Allocation Problem: It generally deals
with a more refined resource partition scheme for each edge
server, which suffers from much higher computational com-
plexity than simply handling the computation offloading issue.
From the standpoint of service providers who hire edge infras-
tructures to serve their own IoT users, the ERA problem
determines the specific amount of edge resources allocated
for each IoT service request, making the maximum IoT users
served at edge and satisfied with a pre-defined optimization
objective. Ma et al. [17] presented a cost-effective resource

allocation framework for the cloud-assisted edge computing
environment, which could dynamically optimize the computa-
tion capacity of edge nodes. Li and Huang [12] designed the
dynamic resource provision algorithm for the edge computing
paradigm, which achieved energy efficiency together with the
heterogeneous performance requirement of IoT users guaran-
teed. Chen et al. [13] optimized the energy efficiency of edge
resource allocation scheme through dynamically modulating
the CPU-frequency scaling of edge servers. Huang et al. [14]
proposed a joint task scheduling and resource allocation
approach in mobile edge computing, which realized revenue
maximization with the linear programming technique utilized.
Chen et al. [20] put forward a decentralized edge resource
allocation algorithm based on the leader-follower game, with
the purpose of satisfying the users’ and edge infrastruc-
ture providers’ utility in different aspects. Lai et al. [15]
formulated the correlation between QoS and QoE metrics
using the logistic function, and then adapted the greedy-like
approach to approximate the overall QoE maximization in the
edge computing environment. Continuing with his previous
works [15], [16], Lai et al. [29] further adopted the game-
theoretical method to solve out the QoE-driven edge resource
allocation problem in a distributed manner, where the approx-
imation ratio of QoE maximization was theoretically proved.
Ma et al. [30] characterized the joint cooperation and competi-
tion of QoE-aware edge resource allocation as a decentralized
cyclic game which approximated the globally QoE-optimized
state, where no restrictions on QoE function types were
required.

To summarize, a distributed computation offloading or
resource allocation scheme generally demonstrates a better
scalability in the large-scale edge computing environment,
where the process of computation offloading or resource allo-
cation can be more efficiently executed in a parallel fashion.
Nonetheless, according to the above literature review, very
few distributed computation offloading or resource allocation
methods in edge computing present the optimality guaran-
tee. It follows that, the design of a distributed ERA approach
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TABLE II
SUMMARY OF KEY NOTIONS

computational

computational

having the optimality guarantee meets with several research
challenges. In addition to this, the existing QoE-aware meth-
ods mainly evaluate the QoE metric based on a pre-defined
QoE function (e.g., MOS-based, logistic, exponential, logarith-
mic, and scenario-tailored functions). Comparatively speaking,
a QoE-aware approach without restrictions on QoE function
types not only manifests greater applicability in general cases,
but also better supports each IoT user’s personalization of its
own QoE function.

In this article, our QoE-aware decentralized ERA scheme
differs from the existing literature. Unlike the refer-
ences [18], [19], [29], [30], we put forward a distributed
resource allocation approach in edge computing, which pro-
vides the QoE-optimality guarantee rather than an approxi-
mate optimization solution. Besides, our proposed QoE-aware
method is with no restrictions on QoE function types, which is
distinguished from the references [10], [11], [15], [16], [29]. In
a nutshell, our QoE-aware decentralized ERA scheme demon-
strates greater applicability, together with the heterogeneity of
QoE functions across different IoT users addressed.

III. SYSTEM MODEL

We consider an edge computing system consisting of N IoT
users and M edge servers. The finite set of N IoT users is
denoted by U = {u1, . . . , uN }, while the finite set of M edge
servers is represented by E = {e1, . . . , eM }. Multiple IoT
users concurrently propose their service requests to nearby
edge servers for processing. Edge servers are geographically

placed based on the service popularity [8], with a limited
signal coverage area covering a group of IoT users. In our
considered scenario, each IoT service request is either pro-
cessed locally at the IoT device, or delivered to a nearby edge
server for further processing.

Request: Without loss of generality, we assume that each
IoT user ui proposes a single service request, and the user
who proposes multiple service requests can be regarded as a
group of IoT users. The number of CPU cycles required for
processing user ui ’s service request is hi . Meanwhile, if the
IoT user ui chooses to process its service request at the edge
server, then ui should transmit data to edge with the data size
of ηi . Furthermore, given the limited signal coverage area of
edge servers, let Ei represent the set of accessible edge servers
by the IoT user ui , and we also define Uj as the set of IoT
users covered by the edge server ej .

Resource: We assume that each IoT device has limited
resources with the local CPU frequency of f Li . Besides,
each edge server ej is equipped with cj units of com-
putational resources. More complicated ERA scenario of
multidimensional edge resources (e.g., RAM, disk storage,
network bandwidth, etc.) will be explored in our future work.
For simplicity, let f Ej denote the CPU frequency per unit
computational resource for the edge server ej .

Network: Suppose that the IoT device accesses and inter-
acts with edge servers via the wireless communication network
whose bandwidth is B, then we apply the Shannon formula to
estimate the data transmission rate between IoT device and
edge server. The communication distance between IoT device
ui and edge server ej is di ,j , and the reference received signal-
to-noise ratio for user ui per unit communication distance is
λ0i . Therefore, the data transmission rate from ui to ej can be
calculated in (1), as adopted in [31] according to the Shannon
formula.

ri ,j = B log2

(
1 +

λ0i
d2i ,j

)
(1)

Note that λ0i = γ0 ·Pi/σ
2, where γ0 is the channel power per

unit distance, Pi is the transmitting power of each IoT device
ui , and σ2 is the noise power of wireless communication
environment.

IV. PROBLEM STATEMENT

A. QoS Model

In order to present the correlation between QoS and QoE
metrics, we firstly analyze the QoS gained by IoT users in edge
computing. Service latency, which is considered as one of the
most important QoS attributes in edge computing [32], [33],
is adopted as the QoS metric in this article. Let s i = (xi , ai )
denote the ERA strategy for the IoT user ui , where xi rep-
resents the edge server exi selected by user ui for edge
processing, and ai represents the amount of edge resources
allocated for user ui . If the IoT user ui decides to process its
own service request locally, (xi , ai ) is defined as (0, 0).

When the IoT user ui conducts local computing with xi = 0
and ai = 0, then ui will process its service request at the IoT
device. Therefore, the service latency for IoT user ui by local
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computing is formulated by (2).

tLi =
hi

f Li
(2)

When the IoT user ui conducts edge computing based on
s i = (xi , ai ), the computational latency at edge server exi
with ai units of CPU resources allocated is formulated by (3),
where the processing capacity for ai units of computational
resources at edge server exi is indicated by ai · f Exi . The pro-
cessing capacity for ai units of edge resources conforms to
the additivity of unit processing capacity f Exi , which can be
implemented by Round Robin CPU scheduling.

tE ,cmp
i ,xi

(ai ) =
hi

ai · f Exi
(3)

Besides, the network latency by data transmission from IoT
device ui to edge server exi is formulated by (4).

tE ,off
i ,xi

=
ηi
ri ,xi

(4)

Given (3) and (4), the overall service latency for IoT user
ui by edge computing based on s i = (xi , ai ) is formulated
by (5).

tEi ,xi (ai ) = t
E ,off
i ,xi

+ t
E ,cmp
i ,xi

(ai ). (5)

B. QoE Model

1) Correlation Analysis Between QoS and QoE: As a user-
centric indicator evaluating the degree of user satisfaction,
QoE jointly depends on the subjective user preference and
the objective performance of software services [44]. On the
one hand, a higher QoS level meritedly makes for a higher
QoE level. In the edge computing system, no IoT user will
decline to experience a higher QoS level; each IoT user will
gain greater satisfaction with a higher QoS level provided. On
the other hand, each IoT user generally has the differentiated
expectation on QoS ranging from low to high, which results
in disparate QoS-QoE correlations. For some IoT users, their
service requests with strong performance susceptibility usually
have a high QoS demand, thus requiring to consume more
computational resources to reach the satisfactory QoS level.
Whereas, service requests from the other IoT users with mod-
erate performance susceptibility have a medium QoS demand,
in needless of many computational resources to make these
users satisfied. Exemplified by the video analytic service [45],
most of service requests merely needs the service latency
below one second. For them, there is almost no perceptible
difference between 100 and 1,000 milliseconds. However, the
other service requests strictly expects of service latency within
100 milliseconds. In this case, a noticeable response delay
could be recognized although service latency is slightly more
than 100 milliseconds.

Pertinent literatures on QoE [46]–[49] have demonstrated
the nonlinear correlation between QoS and QoE metrics.
Commonly speaking, the QoE level gained by an IoT user
is by no means proportional to its attained QoS level. After
an IoT user’s QoS earns a particular level, the correspond-
ing QoE will exhibit very minor advancement regardless of

TABLE III
SUMMARY OF QOE MODELING METHODS

Fig. 1. Correlation between Quality of Experience and Quality of Service.

a remarkable QoS increase, following the well-known Weber-
Fechner Law [50]. As shown in Table III, several existing
works adopted the QoE function in various forms, such as,
MOS-based, logistic, sigmoid, exponential, logarithmic, and
scenario-tailored functions, but they all exhibit the nonlin-
ear correlation trend between QoS and QoE metrics. These
QoE functions with different forms can be all applied into
our proposed work, with no priori assumption on specific
QoE function types. The concrete form of QoE function can-
not affect the practicality of our proposed QoE-aware ERA
approach.

2) QoE Formulation: As previously clarified, the QoE is
non-linearly correlated with the QoS. In our work, there is
no priori restriction on QoE function types. But in order to
expressly present the details of our proposed approach, we
selectively choose the logistic function, which is a general-
ization of sigmoid function, as the QoE function adopted in
our work. Thanks to its simplicity and generality, the logistic
function (6)-(7) has been broadly acknowledged and applied
in several existing works [15], [16], [29], [37], [38] to quantify
the correlation between QoS and QoE metrics. As shown in
Fig. 1, having a lower service latency (i.e., a quantitative rep-
resentation of QoS) generally improves the QoE level. From
the point P2 to P3, the QoE improvement gained tends to
converge; the QoE keeps virtually unchanged in close prox-
imity to the highest QoE level, with no regard to a noticeable
increase in the QoS level. On the contrast, the QoE keeps
steady increase from the point P1 to P2 with the cost of a
little QoS progress. Such a QoE variation trend with QoS
matches very well with our aforementioned QoS-QoE correla-
tion analysis, conforming to the general opinion on QoS-QoE
correlation trend [46]–[49].

Since the QoE metric is usually evaluated according to vari-
ous levels, we apply the percentum to evaluate the QoE metric
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in this article. Each IoT user can gain the maximum QoE of
100%. When the IoT user ui conducts local computing with
xi = 0 and ai = 0, then ui will gain the QoE, which is
formulated based on the logistic function as (6).

QoEL
i =

1

1 + eαi(tLi −βi)
(6)

where αi represents the QoE growth rate for user ui , and
βi represents the mid-point of QoE function for user ui .
Practically, βi implies how much QoS (i.e., service latency)
should be obtained to acquire the 50% of QoE.

Likewise, when the IoT user ui conducts edge computing
based on s i = (xi , ai ), the QoE gained by user ui can be
formulated as (7).

QoEE
i (si ) =

1

1 + e
αi

(
tEi,xi

(ai )−βi

) . (7)

C. Optimization Problem

In our optimization problem, we target the overall QoE
maximization across multiple IoT users. We firstly define the
user utility, based on the QoE formulation (6)-(7).

When the IoT user ui selects to conduct local computing,
then ui has the user utility as (8), indicating the QoE gained
by local computing.

πi (s i ) = QoEL
i (8)

When the IoT user ui selects to conduct edge computing
with s i = (xi , ai ), then its user utility is formulated as (9).

πi (s i ) =

{
QoEE

i if QoEE
i > QoEL

i
QoEL

i otherwise
(9)

The formulation on user utility (9) embodies the selection
rule between local computing and edge computing, which is
specifically divided into two cases. Compared with local com-
puting, if the IoT user ui gains the higher QoE by edge
computing through its ERA decision s i = (xi , ai ), then ui
will determine to conduct edge computing according to s i ,
thereby having the user utility of QoEE

i which indicates the
gained QoE by edge computing. Otherwise, the IoT user ui
will determine to process its own service request locally with-
out any occupancy of edge resources (i.e., xi = 0, ai = 0),
thus holding the user utility of QoEL

i which is the gained QoE
by local computing.

With the user utility πi (s i ) carefully defined, our QoE-
aware ERA problem is thereby given, with the objective of
overall QoE maximization (10), subject to (11)-(12). Note
that I{condition} is an indicator function returning 1 when the
condition is true, otherwise 0.

max
xi ,ai

∑
i∈U

πi (s i ) (10)

∑
i∈Uj

ai · I{xi=j} ≤ cj ∀j ∈ E (11)

xi ∈ {0} ∪ Ei , ai ≥ 0 ∀i ∈ U (12)

The resource constraints (11) ensure that each edge server
ej cannot allocate IoT users with edge resources exceeding its

resource capacity of cj . And the user constraints (12) imply
that each IoT user ui can either be scheduled to one of its
accessible edge servers, or process its own service request at
the local IoT device.

Solving the QoE-aware ERA problem suffers from several
computational challenges. It can be found that our QoE-aware
ERA problem affiliates to the family of bin packing problem,
which is NP-hard to solve in a centralized manner [25]. Each
edge server is conceived as a bin with finite computational
resources, and our objective is to determine the ERA scheme
across multiple IoT users with the overall QoE maximized.
Besides, the optimization objective (10) formulated by QoE
functions (see Eqs. (6), (7)) is in the nonlinear form, mak-
ing the complexity of problem solving increased as well [51].
Hence, it necessitates an efficient and effective solution for
our QoE-aware ERA problem.

V. EDGE RESOURCE ALLOCATION GAME

A. Game Formulation

To attack the computational intractability of our ERA
problem, game theory is introduced to reduce the centraliza-
tion of optimization and enable each IoT user a certain degree
of autonomy. Specifically, each IoT user is allowed to individ-
ually make the ERA decision based on its own QoE interest,
thereby facilitating our ERA problem solved in a decentralized
manner. The definition of QoE-Incentive ERAGame is given in
Definition 1. Note that, in our game formulation, all the possi-
ble strategies si of an IoT user ui form up its feasible strategy
set Si .

Definition 1 (QoE-Incentive ERAGame): A strategic game
G formulating the edge resource competition amongst N IoT
users is defined by a triple 〈U , (S i )ui∈U , (πi )ui∈U 〉 such that

• U is the set of players which specifically refer to N IoT
users here. Players compete against each other to gain a
higher QoE via occupying more edge resources.

• S i is the set of feasible strategies for IoT user ui . Its
strategy si ∈ S i specifies the edge server xi where
the user ui ’s service request is scheduled, together with
the amount of edge resources (i.e., ai ) allocated for
computational processing.

• πi is the utility function of IoT user ui , formulated by (8)
or (9), to evaluate the QoE obtained by user ui via
adopting a strategy si ∈ S i .

In our ERAGame, all the IoT users would like to be allo-
cated more edge resources with the purpose of gaining higher
QoE. However, each IoT user has to compete for the lim-
ited edge resources with other users and selects a strategy
si ∈ Si aimed to maximize its own utility (i.e., QoE). Strategy
si selected by each IoT user ui makes up the strategy profile
s = (s1, . . . , sN ). During the game phase, suppose that an
IoT user ui originally selects a strategy si , but finds another
feasible strategy s′i -> s′i ∈ Si which gains higher utility (i.e.,
QoE). Incentivised by the benefit of this discovery, the IoT
user ui would naturally expect to update its strategy decision
as s′i .

Resulted from the finite resource supply of edge servers,
there should be conflicts amongst multiple IoT users, which
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gives rise to the edge resource competition. To mitigate the
conflicts amongst IoT users, the concept of Nash equilib-
rium (NE) [52] is thereby applied to manage the competitive
behavior between IoT users. The definition of NE is given in
Definition 2.

Definition 2 (Nash Equlibrium): A Nash Equilibrium for
the ERAGame G = 〈U , (S i )ui∈U , (πi )ui∈U 〉 is a strategy
profile s∗ satisfying that for each player ui ∈ U ,

πi
(
s∗i , s∗−i

) ≥ πi
(
si , s

∗−i

)
, ∀si ∈ Si . (13)

Note that, s−i denotes the strategy profile except the IoT
user ui , and πi is extended from πi (si ) to πi (si , s−i ) in
the game formulation, representing the edge resource com-
petition amongst IoT users. Any IoT user cannot arbitrarily
increase its edge resource allocation, regardless of the current
edge resource usage by other users. In addition, we define
π−i (si , s−i ) as the overall QoE gained by all IoT users except
ui under the strategy profile s = (si , s−i ).

B. Edge Resource Preemption Rule

Among the non-unique NE solutions [52], we put forward
an edge resource preemption rule on strategy decision to make
the ERAGame admit at an NE solution with the optimal overall
QoE. The preemption rule is designed with the principle that
the strategy change requested by an IoT user ui is adopted,
which can bring the QoE upgrade to not only the IoT user ui
itself (i.e., πi ) but the overall system (i.e.,

∑
ui∈U πi ) as well.

As depicted in Fig. 2, there exist two cases identified for
classified discussion on strategy change. Specifically speaking.

• Case 1: Strategy change of IoT user ui is approved by
occupying idle edge resources.

– In this case, there are idle edge resources which are
free to be allocated. Thus, the IoT user ui will nat-
urally decide to occupy idle edge resources, thereby
gaining the higher QoE level.

• Case 2: Strategy change of IoT user ui is approved by
preempting edge resources from other users.

– Here, the additional edge resources that the IoT user
ui requests to realize a strategy change s′i = (x ′i , a ′i )
have been occupied by other users, because of which
no more edge resources can be freely allocated to
ui . Therefore, an edge resource preemption rule is
required to examine whether such a strategy change
s′i proposed by the IoT user ui contributes to the
overall QoE upgrade, at the cost of reducing the
corresponding amount of edge resources from other
users.

From now on, we start by introducing the details of our
edge resource preemption rule. Without loss of generality, we
assume that the IoT user ui is the one who requests a strategy
change s′i = (x ′i , a ′i ) in need of preempting the edge resources
from other users. Let Δai denote the number of edge resource
units that ui expects to preempt; p(ui ) represents the set of
IoT users that could be preempted by ui , since they take up the
computational resources of edge server x ′i -> ex ′

i
. The IoT user

ui gains the QoE improvement of Δπi through preempting
Δai units of edge resources from users uk ∈ p(ui ), while the
preempted users uk ∈ p(ui ) are totally at the minimum QoE

loss of Δπ−i . Based on these well-defined notations, the edge
resource preemption rule is formally defined in Definition 3.
Note that, after preemption, strategies of all the IoT users but
{ui} ∩ p(ui ) remain unchanged.

Definition 3 (Preemption Rule): The IoT user ui can par-
tially preempt the edge resources held by other users uk ∈
p(ui ), if the overall QoE is upgraded after preemption, i.e.,

Δπi > Δπ−i . (14)

The condition (14) triggering the preemption ensures that,
the QoE improvement of user ui (denoted by Δπi ) over-
comes the simultaneous QoE decrease of users uk ∈ p(ui )
(denoted by Δπ−i ). Besides, since strategies of all the IoT
users but {ui}∩p(ui ) are kept unchanged during the preemp-
tion, the QoE of IoT users U − {ui} ∩ p(ui ) would not be
affected by preemption. Thus, only QoE of users uk ∈ p(ui ) is
reduced because of preemption. Therefore, the overall QoE is
increased after preemption, exactly coinciding with our inten-
tion of making the ERAGame converge to the NE solution
with the optimal overall QoE.

C. Preemption-Based QoE Improve Algorithm (PRIM)

As demonstrated in Algorithm 1, we propose a Preemption-
based QoE Improvement algorithm (PRIM), on account of the
edge resource preemption rule introduced in Section V-B. Our
PRIM algorithm is designed for each IoT user to determine
whether a strategy change s′i proposed by the IoT user ui
can benefit to the overall QoE improvement, where the edge
resource preemption is enabled. If so, the PRIM algorithm
will return the strategy profile s′ ready for update, including
the new strategy s′i proposed by ui and the correspondingly
renewed strategy profile s′−i of other users; otherwise, no
strategy change will be made on the strategy profile.

With regard to our concrete design of PRIM algorithm, on
the one hand, if there are sufficient idle edge resources for
the IoT user ui to update its strategy as s′i gaining a higher
QoE, then the strategy s′i will be adopted. On the other hand,
if no enough edge resources are available for the IoT user ui
to adopt the new strategy s′i , then the minimum QoE decrease
Δπ−i of users p(ui ) = {uk ∈ U :xk = x ′i and k 
= i} should
be calculated and compared with Δπi to justify whether to
conduct the edge resource preemption.

It is worth noting that, the minimum QoE decrease Δπ−i

for IoT users p(ui ) can be calculated within finite iterations
in an efficient computational complexity. In the first-round
iteration, we sort up the IoT users uk ∈ p(ui ), who make edge
resources insufficient for ui to adopt the new strategy s′i , by
π̂k in rank P. Here, π̂k represents the minimum QoE decrease
of user uk when its one unit of edge resources is preempted,
formulated as (15). The above sorting process can be imple-
mented by quick-sorting with the computational complexity
of O(m logm), where m = |p(ui )| is generally less than N.
From the user rank P sorted up, we pick out the IoT user
uv who has the minimum QoE decrease in P and temporarily
release one unit of edge resources from the IoT user uv .

π̂k =

{
πk (sk )− πk (xk , ak − 1) if ak ≥ 2
πk (sk )− πk (0, 0) otherwise.

(15)
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Algorithm 1: Preemption-Based QoE Improve Algorithm
(PRIM)

Input: a new strategy s′i that user ui attempts to update,
current strategy profile s.

Output: new strategy profile s′ ready for update.
1 if πi (s′i ) > πi (si ) then
2 if a ′i +

∑
uk∈U :xk=x ′

i ,k �=i ak ≤ cx ′
i

then
3 return s′ ← {s′i , s′−i};
4 else
5 Δai ← a ′i − cx ′

i
+
∑

uk∈U :xk=x ′
i ,k �=i ak ;

6 Order users uk ∈ U :xk = x ′i and k 
= i by π̂k in
an ascending rank P;

7 Initialize s′−i ← s−i ;
8 while Δai > 0 do
9 Select the top-ranked user uv in P;

10 Try to update s′v ← (xv , av − 1);
11 Reorder uk ∈ U :xk = x ′i and k 
= i by π̂k ,

with the update value of π̂v ;
12 Δai ← Δai − 1;

13 Δπi ← πi (s
′
i , s

′−i )− πi (si , s−i );
14 Δπ−i ← π−i (si , s−i )− π−i (s

′
i , s

′−i );
15 if Δπi > Δπ−i then
16 return s′ ← {s′i , s′−i};
17 else
18 return s′ ← s;

19 else
20 return s′ ← s;

Next, the second-round iteration starts up. Again, the IoT
users uk ∈ p(ui ) are reordered by π̂k , before which π̂v for
the user uv needs to be recalculated. The reordering operation
can be performed on the basis of the user rank P previously
sorted up in the last-round iteration, only needing to locate
the insert position of user uv in P. Such the reordering pro-
cess can be implemented with the computational complexity
of O(m). Having all the IoT users reordered, we take the
similar previous approach to pick out one of IoT users with
one unit of edge resources temporarily released. Such the
iterative process repeats until Δai units of edge resources
temporarily released from IoT users p(ui ). While the iterative
process is terminated, the minimum QoE decrease Δπ−i for
IoT users p(ui ) is obtained to testify whether the preemp-
tion condition (14) is satisfied. If satisfied, then Δai units of
edge resources temporarily released ahead will be confirmed
to be preempted by the IoT user ui . Since the sort-up oper-
ation contributes the majority of computational complexity,
thus our PRIM algorithm has the computational complexity
of O(m(logm +Δai − 1)).

Remark: The PRIM algorithm will work as a called function
in our QoE-aware decentralized ERA algorithm (i.e., QoE-
DEER, detailed later in Section VI). In the decentralized QoE-
DEER algorithm, each IoT user makes local decision on the
request of strategy change by invoking the PRIM algorithm.

VI. DECENTRALIZED ALGORITHM

A. Algorithm Design

Based on the PRIM algorithm, a QoE-aware Decentralized
Edge Resource Allocation algorithm (QoE-DEER) is put for-
ward to find out an NE solution for ERAGame with the
optimal overall QoE. The NE solution with the overall QoE-
optimal state specifies the ERA scheme across multiple IoT
users. To make the ERA process conducted in a decentral-
ized manner, a cooperative messaging mechanism is firstly
designed, based on which the QoE-DEER algorithm is given.
The message types involved in the cooperative messaging
mechanism are listed as follows. They are applied to maintain
communications between IoT users and edge servers.

• Begin Message (BM): The ERAGame does not reach an
NE solution, as long as there exists at least one strat-
egy requested for update. Here, each edge server ej will
broadcast the BM to its affiliated IoT users ui ∈ Uj to
continue the ERAGame.

• Information Message (IM): While broadcasting the BM,
each edge server ej also informs its affiliated IoT users
ui ∈ Uj of the ERA status about other users u ∈
∪j∈EiUj , via sending the IM message.

• Strategy Message (SM): With the IM received, each IoT
user ui decides whether to request for strategy change.
If requesting, then ui will send SM to the relevant edge
server, aimed to acquire permission for strategy change.

• Allow Message (AM): In our ERAGame design, only an
IoT user is permitted for strategy change in each decision
iteration. Thus, all edge servers will negotiate and then
send only one AM to an IoT user who is granted permis-
sion for strategy change. The negotiation is conducted
based on the all-come-then-improve policy.

• Update Message (UM): Once after determining which
one of IoT users is permitted for strategy change, all
edge servers should also notify the other IoT users whose
allocated resources are partially preempted, via sending
the UM message.

Based on these messages, the decentralized QoE-DEER
algorithm is given, as shown in Algorithm 2. Note that, Δt is
predefined to denote the required time to transmit a message
between IoT users and edge servers. To clarify the message
protocol running in the QoE-DEER algorithm, the flow graph
for message passing in each time slot is illustrated in Fig. 2.
The QoE-DEER algorithm runs in each time slot until the
game process terminates and consists of the following three
phases.

Phase 1 (Lines 2-3): If the ERAGame has not reached an
NE solution, all edge servers will respectively broadcast the
BM to their own affiliated IoT users, to continue the game.
Meanwhile, each edge server updates and packs the current
ERA status as an IM message. The IM is sent to the affiliated
IoT users of each edge server, providing users with reference
information to determine whether requesting a strategy change.

Phase 2 (Lines 4-10): With sufficient IMs received, each
IoT user ui will invoke the PRIM algorithm to locally deter-
mine whether there is a new strategy profile s′ = (s′i , s′−i )
both increasing its own QoE and benefiting to the overall
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Fig. 2. Flow graph for the cooperative message passing in each time-slot decision.

Algorithm 2: QoE-Aware Decentralized Edge Resource
Allocation Algorithm (QoE-DEER)

Input: strategy profile s(t) in the time slot t.
Output: strategy profile s(t + 1) in the time slot t + 1.

1 Initially set s(t + 1)← s(t);
2 Phase 1: Continue the game
3 Each edge server broadcasts BM and IM to its affiliated

users;
4 Phase 2: Acquire the next strategy
5 for each user i ∈ U do
6 Set a variable s′ ← s(t);
7 for each feasible strategy ŝi ∈ Si do
8 s′ ← PRIM (ŝi , s

′);
9 if s′ 
= s(t) then

10 Send SM to the edge server specified by s′i ;

11 Phase 3: Select one requested strategy to improve
12 if any edge server receives SM in Δt then
13 Pick out the requested strategy s∗ which achieves the

greatest QoE improvement;
14 Adopt s(t + 1)← s∗;
15 Send AM to the user who requested to update s∗;
16 Send UMs to the user whose allocated resources are

partially preempted;

17 else
18 return s(t + 1); � Reach the Nash Equilibrium.

QoE improvement. If such an eligible strategy profile s′
non-uniquely exists, the IoT user ui will finalize the new strat-
egy profile s′ requested for strategy change, according to the
best-response guideline [52]. Finally, the IoT user ui will send
SM to the edge server specified by s′i , requesting permission
for updating the strategy profile as s′.

Phase 3 (Lines 11-18): Since edge servers won’t receive
SMs later than Δt if any IoT user requests for strategy change,
thus edge servers should receive all SMs within Δt and
then negotiate each other to decide which of strategy-change
requests is adopted. The negotiation process is based on the
all-come-then-improve policy; in specific, the strategy-change

request s∗ gaining the greatest overall-QoE improvement is
selected out amongst all requests. Then, s∗ is adopted. In
response to the SM received by edge server, an AM will be
sent back to the IoT user requesting the strategy change of
s∗; meanwhile, UMs should be sent to the IoT users whose
part of allocated edge resources are preempted. On the con-
trast, if none of SMs is received by edge servers within
Δt , the ERAGame has reached an NE solution, thereby the
QoE-DEER algorithm terminates.

Our decentralized QoE-DEER algorithm for each time-slot
decision can be approximately accomplished within the maxi-
mum time of 3Δt , based on the message complexity analysis
for distributed algorithms [53], [54]. In Phase 1, each edge
server can broadcast BMs and send IMs to its affiliated IoT
users in parallel, which takes at most Δt . Then, in Phase 2,
if requesting for strategy change, the IoT user will send the
SM to edge server; the SM won’t be received by edge server
later than Δt . In Phase 3, with sufficient SMs received, the
edge server adopts one of strategy-change requests with an
AM sent back, and sends the UMs to inform the relevant IoT
users that their allocated resources are partially preempted; the
SM and UMs should be delivered at the respective target user
within Δt . To sum up the above three phases, our decentral-
ized QoE-DEER algorithm is estimated to be accomplished at
the time cost of 3Δt .

B. Algorithm Analysis

1) Convergence Analysis: We investigate whether our
QoE-DEER algorithm can converge at an NE solution
within the finite number of decision iterations. Since our
QoE-DEER algorithm is the decentralized implementation of
ERAGame, we just need to justify whether our ERAGame
can admit at an NE within the finite number of iterations.
The Finite Improvement Property is an important property for
potential games, indicating that an NE of potential games
can be reached via a process going through a finite number
of iterations [26]. Therefore, the convergence of QoE-DEER
algorithm is ensured if we prove the ERAGame as a potential
game. The definition of potential game is preliminarily given
as follows.

Definition 4 (Potential Game): A game is a potential game,
if there exists a potential function Φ:S → R such that for
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each player ui ∈ U , Φ(s′) > Φ(s) holds for any strategy
improvement from s to s′ satisfying πi (s

′
i ) > πi (si ), where

s = (si , s−i ) and s′ = (s′i , s′−i ).
Note that, since edge resource preemption is enabled to

reach an NE solution with the optimal overall QoE in our game
formulation, thus the strategy si of more than one IoT users
could be simultaneously changed during a strategy improve-
ment from s to s′. According to Definition 4, the NE s∗ in
the ERAGame can be interpreted in such a way that for any
IoT user ui ∈ U , πi (s∗i , s∗−i ) = maxsi∈Si

πi (si , s
∗−i ), which

guarantees the existence of NE by seeking out the optimum
of potential function [55]. The potential function monotoni-
cally increases with each strategy improvement until reaching
the optimum of potential function which represents the NE,
where the Finite Improvement Property of potential games is
empowered. Such a useful property of potential games has
been leveraged by [18], [19], [30]. We constructively prove
the ERAGame as a potential game in Theorem 1, and the
potential function Φ(s) is pre-defined in (16).

Φ(s) =
∑
ui∈U

πi (si ). (16)

Theorem 1 (ERA Potential Game): The ERAGame is a
potential game with the potential function of Φ(s).

Proof: Suppose that an IoT user ui ∈ U changes its strat-
egy from si to s′i , fulfilling the statement of πi (s

′
i , s

′−i ) >
πi (si , s−i ). To prove Theorem 1 true, we need to testify that
Φ(s′) > Φ(s). Note that si = (xi , ai ), s′i = (x ′i , a ′i ).

According to the edge resource preemption rule, the IoT
user ui may need to conduct resource preemption to change
its strategy from si to s′i . In the meantime, edge resources
occupied by other IoT users {uk ∈ U :xk = x ′i and k 
= i}
could be partially preempted. Here, we apply p(ui ) to denote
the set of IoT users preempted by ui . Assume that an IoT
user uv ∈ p(ui ) originally adopting the strategy sv would
have to take the strategy as s′v after preemption, resulting in
a QoE decrease represented by πi (sv ) − πi (s

′
v ). Then, the

total QoE decrease for all IoT users uv ∈ p(ui ) should be∑
uv∈p(ui )(πi (sv )− πi (s

′
v )).

Given the preemption condition (14), edge resource preemp-
tion is triggered only when

πi
(
s′i
)− πi (si ) >

∑
uv∈p(ui )

(
πi (sv )− πi

(
s′v
))

which thereby follows that

Φ
(
s′
)− Φ(s)

=

⎛

⎝πi
(
s′i
)
+

∑

uv∈p(ui )

πi
(
s′v
)
⎞

⎠−
⎛

⎝πi (si ) +
∑

uv∈p(ui )

πi
(
s′v
)
⎞

⎠

=
(
πi
(
s′i
)− πi (si )

)
+

∑

uv∈p(ui )

(
πi
(
s′v
)− πi

(
s′v
))

> 0.

To summarize, Φ(s′) − Φ(s) > 0 always holds if πi (s
′) −

πi (s) > 0, confirming our ERAGame as a potential game with
the potential function of Φ(s).

With our ERAGame proved as a potential game, it is
ensured that our QoE-DEER algorithm can coverage at an
NE solution within the finite number of decision iterations.

2) Performance Analysis: We analyze the performance of
QoE-DEER algorithm from the aspect of optimality, judging
whether the QoE-DEER algorithm equivalently solves the
QoE-aware ERA problem.

As discussed in Section IV-C, our QoE-aware ERA problem
targets the overall QoE maximization across multiple IoT
users. Considering the computational intractability of our
ERA problem, we design the QoE-DEER algorithm based
on ERAGame which solves our ERA problem in a decentral-
ized manner. Nevertheless, there might be non-unique NEs in
the ERAGame [52]. Thus, it is worthy investigating whether
the QoE-DEER algorithm eventually achieves the NE solu-
tion equivalently maximizing the overall QoE for our ERA
problem. Theorem 2 has proved the equivalent optimality as
follows.

Theorem 2: The QoE-DEER algorithm can find out the
optimal edge resource allocation scheme, where the overall
QoE is maximized.

Proof: Let s = {s1, . . . , sn} denote the strategy pro-
file solved by the decentralized QoE-DEER algorithm, and
s∗ = {s∗1, . . . , s∗n} to denote the optimal strategy profile which
maximizes the overall QoE as

∑
ui∈U πi (s

∗
i ).

We prove Theorem 2 by reduction to absurdity. Assume
that the strategy profile s cannot achieve the maximum overall
QoE, implying

∑
ui∈U πi (si ) <

∑
ui∈U πi (s

∗
i ). Then, there

must exist a group of IoT users who gain a higher QoE in
s∗i than in si . Thus, all the IoT users can be divided into two
groups G1 and G2.

The first group G1 comprises the IoT users who gain a
higher QoE in s∗i than in si , implying

∑
ui∈G1

πi (s
∗
i ) >∑

ui∈G1
πi (si ). The QoE increment for these users in G1 is

represented by ΔI =
∑

ui∈G1
(πi (s

∗
i )− πi (si )).

The second group G2 comprises the remaining IoT users.
For these users, in the worst case, their QoE may be degraded
from s to s∗, i.e.,

∑
ui∈G2

πi (s
∗
i ) ≤

∑
ui∈G2

πi (si ). Then,
the QoE decrement is correspondingly represented by ΔD =∑

ui∈G2
(πi (si )− πi (s

∗
i )).

Due to the assumption that
∑

ui∈U πi (si ) <
∑

ui∈U πi (s
∗
i ),

the QoE increment brought by IoT users in G1 should be
greater than the QoE decrement brought by users in G2, i.e.,
ΔI > ΔD , thus triggering the preemption condition (14)
further upgrading the overall QoE. Note that, the decentral-
ized QoE-DEER algorithm would not quit the loop until no
IoT user can update its strategy to improve the overall QoE,
even enabled by edge resource preemption. In other words,
s cannot be the finalized strategy profile obtained by the
QoE-DEER algorithm, which implies a contradiction with the
initial assumption. Therefore, the decentralized QoE-DEER
algorithm can equivalently maximize the overall QoE as the
centralized one for our ERA problem.

VII. EVALUATION

A. Experimental Setup

We simulate an edge computing environment with multiple
IoT users and edge servers by using the iFogSim [28]
toolkit, where the realistic EUA dataset [27] is adopted. As
a dependable simulation framework for edge computing, the
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iFogSim toolkit has been widely adopted for simulating edge
resource management [56]–[58]. It models the real-world edge
computing environment, where the impact of different edge
resource management techniques can be studied in various
metrics. Meanwhile, as for the EUA dataset, it records the
geographical information of cellular base stations and IoT
users within the Melbourne central business district area in
Australia, at the format of longitude and latitude. The geo-
graphical information of all cellular base stations in the EUA
dataset is drawn from the radio-comms license dataset pub-
lished by the Australian Communications and Media Authority
(ACMA). The geographical location of IoT users is derived
through the IP lookup service http://ip-api.com/, which con-
verts the IP address of IoT users into the corresponding
geographical location. The IP address blocks allocated to
Australia is provided by the Asia Pacific Network Information
Centre (APNIC). Since edge servers are normally deployed
near cellular base stations [59], [60], thus the geographical
information of cellular base stations is used as the location of
edge servers in our experimental setting, while the latitude-
longitude information of IoT users in the EUA dataset is
straightforwardly adopted here.

For the edge server, the signal coverage radius of each
edge server ej is randomly set between 450 and 750 meters,
and the CPU frequency per unit of edge resources f Ej is
set as 10 GHz. The number of available edge resources cj
is diversely set in various experimental scenarios, ranging
from 6 to 13.

For the IoT user, each user ui can conduct local comput-
ing at the CPU frequency f Li , which is drawn from a uniform
distribution across [1.5, 2] GHz. Meanwhile, each IoT user
ui generates its QoE-related parameters αi and βi respec-
tively following the normal distribution N (1.5, 0.252) and
N (75, 102). Besides, the data size ηi of IoT user ui ’s service
request is drawn from the uniform distribution at the range
of [150, 200] KB, which approximately matches the size of a
photo. The number of CPU cycles per data size for the IoT
service request is 5.

For the wireless communication between IoT devices and
edge servers, we set the transmitting power Pi for each
IoT device ui as 0.5 W, and the channel bandwidth B as
10 MHz [61], [62]. The noise power of wireless communi-
cation environment τ2 is set as −87 dBm [63], while the
channel power per unit communication distance γ0 is set as
−50 dB [31], [64].

B. Performance Benchmarks

Our proposed QoE-DEER algorithm is compared against
four representative benchmark approaches, including a QoE-
optimal baseline approach, two state-of-the-art approaches
(i.e., QoEUA, and QoS-aware), and a randomized baseline
approach.

• QoE-Optimal: This is an optimal ERA approach which
achieves the overall QoE maximization by introducing
the integer-programming technique. Here, our QoE-aware
ERA problem (i.e., Eq. (10)) is settled in a central-
ized manner. Note that, this QoE-optimal method is

implemented with the IBM ILOG CPLEX Optimization
solver [65].

• QoEUA: This is a greedy-like heuristic ERA approach
for overall QoE maximization, which synthesizes the
state-of-the-art methods proposed in [15], [16]. Service
requests of IoT users are conducted scheduling and
resource allocation on edge servers, according to the
non-increasing order of the number of their accessible
edge servers [16]. Then, in a greedy-like manner [15],
each scheduled user is then subsequently allocated to its
accessible edge server with the most idle computational
resources, which brings its greatest possible QoE.

• QoS-aware: This approach is developed by applying
minor modification to our problem domain. Specifically,
the optimization objective is displaced by the classical
service-latency minimization. In other words, multiple
IoT users participate in the ERAGame process, but with
a distinctive objective of reducing their respective service
latency. The corresponding NE solution can be reached
and finalized as the QoS-aware ERA scheme.

• Random: This approach schedules and allocates the IoT
service requests on edge servers, following a random
fashion. According to a random rank, each IoT user ui
randomly selects the target edge server exi and the cor-
responding edge resource allocation ai . Suppose that all
accessible edge resources have been occupied by other
IoT users, then ui would have to conduct local computing
with no edge resources occupied.

Note that, all the experimental results about the QoE-DEER,
QoE-Optimal, QoEUA, and QoS-aware algorithms are aver-
aged over 30 runs, while the experimental results correlated
to the Random algorithm are averaged over 3,600 runs. In each
run, we randomly a specified number of IoT users and edge
servers with different geographical locations from the EUA
dataset.

C. NE Performance

To evaluate the effectiveness of our QoE-DEER algorithm,
we investigate the performance of NE solution at which the
QoE-DEER algorithm finally converges. Given the edge com-
puting environment, the NE performance is evaluated from
three aspects, which are the overall QoE, the average QoE per
IoT user served at edge, and the number of IoT users served
at edge. Our QoE-DEER algorithm is also compared against
several performance benchmarks, as previously introduced in
Section VII-B.

1) NE Performance v.s. Number of IoT Users N: We evalu-
ate the NE performance through configuring the number of IoT
users N from 170 to 450, while the number of edge servers M
and the number of available edge resources per edge server cj
are respectively fixed as 50 and 10. The experimental results on
NE performance are illustrated in Fig. 3(a). At various IoT user
scales, our QoE-DEER algorithm always achieves the highest
overall/average QoE over the state-of-the-art approaches. On
the contrast, the QoS-aware approach generally neglects the
diversity of user preferences on QoS, regardless of strength-
ening the perceived quality by IoT users (i.e., QoE). Since
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Fig. 3. NE performance of QoE-DEER algorithm under different system scales.

edge servers typically provide a lot higher computational
performance than IoT devices, the QoS-aware approach would
conduct service-latency reduction by allocating the maximum
IoT users served at edge. Hence, the overall/average QoE
acquired by QoS-aware approach gradually collapses with the
increasing number of IoT users, where limited edge resource
supply progressively becomes more constrained.

For the QoEUA and random approaches, they demonstrate
the worst performance. In the QoEUA algorithm, the overall
QoE and the number of IoT users served at edge remain almost
unchanged although the number of IoT users scales up. This is
because, each IoT user greedily takes up edge resources; once
an IoT user is scheduled to an edge server, then the user will
monopolize all available computational resources of the edge
server. In Fig. 3(a), all available edge resources are occupied
with no idle computational resources left beyond 50 IoT users.
In terms of the overall QoE improvement, the random baseline
performs even better than QoEUA, thanks to its randomized
ERA strategy which is non-greedy. Comparatively speaking,
the random approach better optimizes the utilization of limited
edge resources than QoEUA, and thus realizes a higher overall
user satisfaction (i.e., QoE).

2) NE Performance v.s. Number of Edge Servers M: We
adjust the number of edge servers M from 20 to 55, with N
and cj respectively set as 250 and 10. Here, the experimental
results on NE performance are shown in Fig. 3(b). Compared
with the state-of-the-art approaches, our QoE-DEER algorithm
gains the highest overall QoE, although they all present a
growing trend in NE performance with the expanding scale
of edge servers. More edge servers deployed into the edge
computing environment implies a better capacity to serve user
requests at edge, thus the number of IoT users served at edge
increases. Thanks to more IoT users served at edge servers,
the overall QoE gets improved accordingly.

Compared with the QoS-aware approach, our QoE-DEER
algorithm demonstrates its advantage on overall/average QoE,
especially when a fewer number of edge servers are deployed.
When less adequate edge servers (i.e., M ≤ 45 in Fig. 3(b))
are geographically deployed, the QoS-aware approach gener-
ally gains the overall/average QoE at a low level. In similar
to Fig. 3(a), the QoEUA algorithm performs even worse than
the random baseline in Fig. 3(b). The greedy-like QoEUA

approach achieves the highest average QoE as our QoE-DEER
algorithm, but incurs the cost of allocating the least number
of IoT users served at edge. The utilization of limited edge
resources is relatively low for the QoEUA algorithm, merely
with a small proportion of IoT users served at edge. Hence,
the overall QoE improvement is very limited in the QoEUA
approach.

3) NE Performance v.s. Available Resources per Edge
Server cj : We investigate the impact of edge server’s computa-
tional capacity cj on NE performance, as depicted in Fig. 3(c).
In specific, the number of available edge resources per edge
server cj is regulated from 6 to 13, while M and N is respec-
tively set as 250 and 50. Under various settings on cj , our
QoE-DEER algorithm always outperforms the performance
benchmarks on the overall QoE improvement. With reasonably
sufficient computational resources equipped per edge server
(i.e., cj ≥ 8 in Fig. 3(c)), our QoE-DEER algorithm can also
acquire the highest average QoE per IoT user served at edge
as the QoEUA approach. Meanwhile, when cj > 9, the growth
rate on NE performance for our QoE-DEER algorithm slows
down. This is because, nearly all 250 users have been sched-
uled to be served at edge servers, with their QoE maximized at
the highest level. Although more edge resources are supplied,
their QoE cannot be virtually upgraded furthermore, merely
resulting in the waste of idle edge resources.

The greedy-like QoEUA algorithm achieves the highest
average QoE, but in an inefficient way. In Fig. 3(c), each
IoT user would monopolize all of available resources on its
dispatched edge server with no idle resources reserved for
other IoT users, no matter how many available resources cj is
configured at each edge server. Hence, for the QoEUA algo-
rithm, it is of little help to improve the overall QoE through
configuring a greater cj per edge server. In the meantime,
the overall/average QoE acquired by the QoS-aware approach
generally collapses when limited edge resource supply gets
more constrained. In Fig. 3(c), the QoS-aware approach would
acquire the overall/average QoE at a lower level than our QoE-
DEER algorithm, when less sufficient computational resources
are equipped at each edge server (i.e., cj ≤ 10).

4) QoE-DEER Algorithm v.s. QoE-Optimal Baseline: In
order to evaluate the optimality of our proposed approach,
we compare our QoE-DEER algorithm against the competitive
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Fig. 4. NE performance of QoE-DEER algorithm against the QoE-Optimal baseline.

Fig. 5. Convergence of QoE-DEER algorithm under different system scales.

QoE-Optimal baseline approach. Recall that, the QoE-Optimal
approach provides a centralized ERA solution for overall QoE
maximization, based on the integer-programming technique;
whereas, our QoE-DEER algorithm solves the ERA problem
for overall QoE maximization in a decentralized manner. The
comparative experimental result under different system scales
is illustrated in Fig. 4. As the number of IoT users, edge
servers, or available resources per edge server increases, both
our QoE-DEER algorithm and the QoE-Optimal approach cor-
respondingly gain a higher overall QoE. More importantly, the
difference in the overall QoE gained by these two approaches
is very minimal, within the excusable deviation range by IBM
ILOG CPLEX Optimization solver. Given the above analysis,
the optimality of our QoE-DEER algorithm is experimentally
validated.

D. Algorithmic Convergence

We experimentally analyze the convergence of our
QoE-DEER algorithm. The convergence of our QoE-DEER
algorithm has been theoretically proved in Theorem 1. To mea-
sure the convergence of our QoE-DEER algorithm, we adopt
the number of decision iterations required for reaching the
finalized NE solution. Similar to Section VII-C, we evaluate
the algorithmic convergence under diverse system scales, var-
ied by different number of IoT users, edge servers, or available
resources per edge server, as shown in Fig. 5. Each experi-
mental result representing the number of decision iterations
is averaged over 30 runs. In each run, a specified number of
edge servers and IoT users are randomly selected from the
EUA dataset, which have various geographical locations.

Fig. 5(a) exhibits the QoE-DEER convergence with the
number of IoT users N. On the one hand, more IoT users par-
ticipating in the ERAGame process generally result in more
possible decisions to be made by IoT users, hence requiring
a greater number of decision iterations to converge at the NE
solution. On the other hand, more IoT users engaging into the
ERAGame process also entails a fiercer competition amongst
IoT users. Especially as the number of IoT users enters the
range greater than 250, many IoT users are simply forced to
conduct local computing due to the intensified shortage of
edge resources. Thus, there is little need for extra decision

iterations to find out the NE solution, when the number of
IoT users further scales up. As in Fig. 5(a), no remarkable
increase trend is exhibited in the number of required decision
iterations, when the number of IoT users is greater than 250.

Fig. 5(b) describes the QoE-DEER convergence with the
number of edge servers M. Since more edge servers partici-
pating in the ERA process implies the enlargement of strategy
space Si for each IoT user ui , hence lowering down the
algorithmic convergence rate. Thus, the number of decision
iterations increases with the number of edge servers.

Fig. 5(c) shows the QoE-DEER convergence with the
number of available resources per edge server cj . In the ini-
tial range from cj = 6 to 9, the number of decision iterations
increases with the available resources cj per edge server as
well. Nevertheless, the number of decision iterations decreases
after the certain point of cj = 9. This is because there are
relatively redundant edge resources after cj = 9, and then
more IoT users can be allocated the greater amount of edge
resources without much competition.

VIII. CONCLUSION

In this article, we propose a game-theoretic approach which
solves the Edge Resource Allocation (ERA) problem maximiz-
ing the overall QoE across multiple IoT users. To attack the
computational intractability of our ERA problem, we formu-
late the QoE-aware ERA problem as a potential game named
ERAGame, where each IoT user chooses its ERA decision
based on its own QoE interests. Given the ERAGame, the ERA
problem can be solved in a decentralized manner, where the
edge resource preemption is leveraged to make the ERAGame
reach the Nash Equilibrium which equivalently maximizes the
overall QoE for the ERA problem. A cooperative message
mechanism is designed to make our decentralized QoE-DEER
approach applicable. The optimality and convergence of our
decentralized approach are analyzed theoretically and verified
experimentally.

There are several avenues for our future work. On the one
hand, dynamic edge resource management scheme might be
designed based on the primary idea proposed in this article. It
can more effectively handle various service requests arriving at
different times, where a more generalized QoE optimization
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objective considering the temporal dynamics could be then
put forward. On the other hand, another revenue of our future
work is to deploy our approach in real-life IoT environments
like unmanned industrial robotic systems. Experimental results
derived from the real-world IoT scenario should provide us
with useful reference on user/system behaviors. Here, some
other important QoE-related factors (e.g., security, and inter-
operability) can be further considered in our optimization
design.
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