
2030 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 2, JUNE 2021

A Price-Incentive Resource Auction Mechanism
Balancing the Interests Between Users

and Cloud Service Provider
Songyuan Li , Jiwei Huang , Member, IEEE, and Bo Cheng , Member, IEEE

Abstract—For a cloud service provider, it necessitates an
emerging cloud ecosystem to consolidate the existing users and
attract more potential users, further gaining its market share.
Therefore, in this article, we design a price-incentive resource
auction mechanism in cloud environment. In response to the
cloud resource price, each user synthesizes her bidding budget
and QoS requirement, and purchases cloud resources accord-
ing to her resource demand in a strategic manner. The cloud
service provider, meanwhile, can regulate the resource demands
of users through conducting a market-based pricing strategy,
against too low prices to cover the operational costs (i.e., energy
costs) or too high prices resulting in user churn. In virtue of an
elaborate market-based pricing strategy, the interests of users
and the cloud service provider are balanced. Our price-incentive
resource auction mechanism targets to stimulate maximum users
willing to purchase resources and perform their applications at
the cloud, on the premise of a minimum profit rate guaranteed
for the cloud service provider. It is also able to provide budge
balance and truthfulness guarantee, and satisfy the envy-freeness.
In order to carry out the above objectives, we carefully design
the user utility function reflecting the complicated user interest,
and formulate our resource pricing and auction problem as a bin
packing problem, which has non-polynomial computational com-
plexity. Regarding the NP-hardness of optimization problem and
the concavity of user utility, we present a computational-efficient
(1 + ε)-approximate algorithm namely PIRA. Finally, we con-
duct simulations based on the real-world dataset to validate the
effectiveness of our proposed approach.

Index Terms—Cloud computing, resource management,
market-based pricing, auction mechanism.

Manuscript received May 7, 2020; revised September 9, 2020; accepted
November 6, 2020. Date of publication November 10, 2020; date of cur-
rent version June 10, 2021. This work was supported by National Natural
Science Foundation of China (No. 61972414), Beijing Nova Program of
Science and Technology (No. Z201100006820082), Beijing Natural Science
Foundation (No. 4202066), National Key Research and Development Program
of China (No. 2018YFB1003800), and Fundamental Research Funds for
Central Universities (No. 2462018YJRC040). The associate editor coordi-
nating the review of this article and approving it for publication was
N. Kamiyama. (Corresponding author: Jiwei Huang.)

Songyuan Li and Bo Cheng are with the State Key Laboratory of
Networking and Switching Technology, Beijing University of Posts and
Telecommunications, Beijing 100876, China (e-mail: lisy@bupt.edu.cn;
chengbo@bupt.edu.cn).

Jiwei Huang is with the Beijing Key Laboratory of Petroleum Data
Mining, China University of Petroleum, Beijing 102249, China (e-mail:
huangjw@cup.edu.cn).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TNSM.2020.3036989, provided by the authors.

Digital Object Identifier 10.1109/TNSM.2020.3036989

I. INTRODUCTION

W ITH the increasing prevalence of cloud computing,
a variety of cloud service providers (e.g., Amazon

EC2 [1], Google Cloud Platform [2], Microsoft Azure [3])
are presented to users who intend to migrate their applications
into cloud. Thanks to the technological advance of cloud com-
puting, mainstream cloud service providers usually provide
similar services, and are capable of meeting the general service
requirements of most cloud users. In this case, a cloud user
may have several candidate cloud service providers for choice.
In the face of market competitiveness for similar services, it is
necessary for a cloud service provider to develop a burgeon-
ing cloud ecosystem, with the aim of maintaining the existing
users and alluring more potential cloud users, further increas-
ing its market share. A significant market share can support a
cloud service provider’s profitability and sustainability, which
is conducive to holding a competitive advantage in the cloud
marketplace.

Market-based cloud pricing strategy plays a prominent role
in regulating the cloud service provider’s resource supply and
the resource demands of users [4], which can be an engine of
constructing an advanced cloud ecosystem. Resource demands
of users are usually price sensitive, varied with different cloud
pricing settings. When the cloud resource price is set as a
relatively lower price, more users are attracted to purchase
cloud resources. However, when the cloud service provider
raises the cloud resource price, the resource demands of users
are then tightened. The cloud service provider’s operational
costs mainly arise from the energy costs of the cloud infras-
tructure [5], [6]. With the cloud service provider’s operational
costs (i.e., energy costs) and resource demands of users fluctu-
ating with time, the cloud service provider would dynamically
modulate the resource price, and deliver a competitive resource
price [7]. The competitive resource price can not only recoup
the cloud service provider’s operational costs from users,
but also incentivize the maximum users to purchase cloud
resources on the cloud platform. With the maximum cloud
users attracted, the cloud service provider captures a significant
market share in the marketplace.

In this article, we explore the efficacy of market-based cloud
pricing strategy by putting forward a price-incentive resource
auction mechanism balancing the interests of users and the
cloud service provider. Multiple users simultaneously make
service requests, and place their bids and QoS requirements

1932-4537 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Exeter. Downloaded on October 25,2023 at 11:51:22 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-8688-1026
https://orcid.org/0000-0001-5220-6703
https://orcid.org/0000-0003-2160-2839

LI et al.: PRICE-INCENTIVE RESOURCE AUCTION MECHANISM BALANCING THE INTERESTS BETWEEN USERS AND CLOUD SERVICE PROVIDER 2031

to the cloud. On the one side, each user would pay for the
allocated cloud resources, only when her QoS requirement is
satisfied by the cloud service provider. On the other side, the
cloud service provider receives the service bids from users, and
then makes a competitive pricing decision on cloud resources
to call on maximum users served at cloud. The user is incen-
tivized to outsource her application at cloud, due to her gained
maximum net-utility relating to her bidding budget and QoS
requirement. The energy cost incurred by operating the cloud
infrastructure is also adopted as an important consideration
influencing the pricing setting. The resource price and charge-
ment should overrun the cost, and ensure a particular profit
rate which is specified by the cloud service provider. The ser-
vice bid whose budget is below the cost would not be accepted
by the cloud service provider. To sum up, the objective of our
resource auction mechanism is to motivate maximum users to
host their applications at cloud while a profitability objective
requires to be at least guranteed. This way, our cloud ecosys-
tem reaches a balance between the interests of users and the
cloud service provider.

In order to develop a robust resource auction mechanism, it
is essential to satisfy the properties of budget balance, truth-
fulness and envy-freeness. Budget balance is usually treated
as a primary requirement when designing the resource auc-
tion mechanism [8]. It claims that the bidding budget of a
user is always sufficient to cover her service payment; oth-
erwise, the proposed auction mechanism is invalid. Besides,
the cloud service provider also needs to notice the fraudulent
behavior of users. One typical fraudulent behavior may be mis-
reporting the bidding budget with the attempt to be allocated
more cloud resources, further gaining a higher QoS. Hence,
the resource auction mechanism should provide the truthful-
ness guarantee, which removes the opportunistic incentive to
misreport the bidding budget [9]. In terms of the envy-freeness,
it is an inherent fairness criterion in economics. Regarding a
cloud pricing setting, users can be allocated the amount of
resources which maximize their utilities [10]. In our problem,
a net-utility function is elaborately designed for the user, which
collectively evaluates the user’s QoS gain and economic cost
of resource purchase. Therefore, with the guarantee of bud-
get balance, truthfulness and envy-freeness, our price-incentive
resource auction mechanism can enhance the user satisfaction
and instruct users to truthfully reveal their service bids, further
consolidating more cloud users.

However, designing such a resource auction mechanism
which achieves the above objective and properties is challeng-
ing in three folds. First, it is awkward to satisfy the properties
of both truthfulness and envy-freeness in the auction where
the cloud service provider simultaneously sell resources to
multiple users. As exemplified by the Vickrey Clarke Groves
(VCG) auction [11], it provides the truthfulness guarantee, but
discriminates between bidders (i.e., users) by selling identical
goods (i.e., cloud resources) at different prices, which dis-
satisfies the requirement of envy-freeness. Second, resource
pricing and procurement are coupled. The resource pricing
result determines the resource purchase demands of users,
and in return, the stimulated resource purchase demands also
reflect the market competitiveness of the resource pricing

result. Hence, it is required to comprehensively investigate the
interplay between resource pricing and procurement. Third,
the final QoS gain of a service request is by no means
proportional to the amount of allocated resources, usually
with concavity [12] instead. As a result, our optimization
problem is non-convex, which is computationally intractable
to solve out the optimal resource price. Thus, we expect to
design a computational-efficient approximate algorithm with
a good approximation ratio to attack the intractablity of the
optimization problem.

Main contributions of our work are summarized as follows.
• We investigate the interaction between users and the

cloud service provider in the process of resource pricing
and auction, aiming at stimulating maximum users served
at cloud and ensuring the cloud service provider’s prof-
itability goal. Based on this, we devise a cloud ecosystem
where the main steps in the price-incentive resource
auction mechanism are identified.

• To calculate the optimal resource price, we carefully
define the net-utility of user, and formulate our resource
pricing and auction problem as a non-convex optimization
model, where both the NP-hardness and computational
intractability incurred by concave utility functions are
analyzed.

• We design an approximate algorithm based on the decom-
position approach namely PIRA to achieve the objective
of incentivizing the maximum users served at cloud, on
the premise of the cloud service provider’s minimum
profit rate guaranteed. Having the maximum users served
at cloud, the cloud service provider’s revenue is also
maximized with an (1 + ε) approximation ratio.

• We theoretically prove that our mechanism meets the
properties of budge balance, truthfulness and envy-
freeness, while the computational complexity of PIRA
algorithm is analyzed. We also conduct experimental val-
idation based on the real-world dataset to evaluate the
performance of our proposed approach.

The rest of article is organized as follows. We first discuss
related works in Section II. Then, in Section III, we introduce
our system model and formulate our optimization problem. In
Section IV, we put forward our price-incentive resource mech-
anism and theoretically prove its properties. In Section V, we
extensively conduct simulating experiments based on the pub-
lic real-world dataset to verify the effectiveness of our resource
auction mechanism. Finally, we state the concluding remark
and look ahead our future work in Section VI.

II. RELATED WORK

A. Market-Based Cloud Pricing

Market-based pricing strategy has been launched into real-
world cloud enterprise. One of the prominent is the Amazon
EC2 Spot Instance [13], which is aimed to take advantage of
the idle EC2 instances. The Amazon EC2 operator gradually
modulates the price of Spot Instances on the basis of long-term
trends in supply and demand for Spot Instance capacity, which
is normally lower than the price of on-demand instances. To
make idle EC2 instances utilized, Yang et al. [14] designed a

Authorized licensed use limited to: University of Exeter. Downloaded on October 25,2023 at 11:51:22 UTC from IEEE Xplore. Restrictions apply.

2032 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 2, JUNE 2021

reserved-instance reselling algorithm for the cloud user, where
the reserved instance which was highly likely to be unutilized
in the future would be resold as the Spot Instance to reduce
the waste of unused reservations. Khodak et al. [15] exploited
the price advantage of Spot Instance to save the economic
cost of cloud user, where the user purchased resources based
on the predicted composite demand of Spot and on-demand
instances making applications executed within the acceptable
QoS level. Kamiyama [16] got enlightened by the mechanism
of Amazon EC2 Spot Instances, and then proposed a novel
VM trading approach amongst multiple cloud providers which
allowed idle VM instances transferred to other providers for
sufficient use. To sum up, the recent study on the Amazon EC2
Spot Instance mostly focuses on the resale of idle resources,
or takes the price advantage of Spot Instance to bring down
the operational cost of cloud users.

Moreover, there are also several literatures concerning the
design of market-based pricing strategy itself. Compared with
the static pricing strategy, the market-based pricing strat-
egy can capture and regulate the fluctuation of supply and
demand for cloud resources, thereby more effectively maxi-
mizing the revenue/profit earned by the cloud service provider.
Wan et al. [17] designed a reactive pricing strategy for cloud
resources with the aim of profit maximization, which dynam-
ically modulated the cloud server price in response to the
fluctuation of energy costs and user demands. Cong et al. [18]
explored the users’ SLA requirements as user-perceived val-
ues, and then presented a market-based server pricing model
dynamically optimizing the cloud service provider’s profit.
Zheng et al. [19] proposed a dynamic bandwidth pricing strat-
egy for revenue maximization in inter-datacenter networks,
where the bandwidth resource was time-independently priced
based on varied bandwidth demands of users. Wang et al. [20]
combined the market-based pricing strategy with effective VM
capacity modulation to consolidate the cloud profitability from
the latency-tolerant users.

Besides, market-based pricing strategy is also functioned in
timely recouping fluctuant energy costs from cloud users. The
data center operated by the cloud service provider is normally
situated in a deregulated electricity marketplace, where the
electricity price is evolving stochastically over time [21], [22].
Aldossary et al. [23] surveyed several energy-aware pricing
schemes, and identified the importance of designing a cloud
pricing strategy which should accurately reflect the fluctuant
electricity price. Nasiriani et al. [24] learned the fluctuant user
workload causing the peak of energy cost, and thus developed
a peak pricing scheme which fairly distinguished each cloud
user’s contribution to the peak energy cost. Sarker et al. [25]
paid regard to unpredictable electricity load and congestion in
the urban electric vehicle environment, and thus developed
a nonlinear power pricing strategy to regulate the electric
vehicle’s power request with the social welfare maximized.
Qiu et al. [26] aimed to achieve green cloud computing,
and thus designed a discriminatory pricing policy for cloud
resources which both maximized the profit earning and mini-
mized the instant energy costs, with user demands also taken
good care of.

B. Resource Auction Mechanism

Auction is a powerful tool to characterize the mar-
ket behaviors of cloud resource pricing and allocation. A
good resource auction mechanism can precisely model the
interaction between resource providers and buyers, as well
as perfectly match the resource supply and demand with
an effective pricing standard regulated. Huang et al. [27]
investigated the competition between network and cloud
providers from the perspective of an non-cooperative game,
and gained an economic understanding towards cloud auction.
Landa et al. [28] designed a Vickrey-auction-based service
provisioning scheme, aimed to handle the resource competi-
tion across users in distributed clouds. Jiang et al. [29] studied
the dynamic characteristics of IaaS consumers and providers
from the Google Cluster Trace, and then proposed a stochas-
tic resource pricing and allocation mechanism based on the
VCG auction. Sun et al. [30] formulated the resource sharing
mechanism amongst cloudlets as a sealed-bid bilateral auc-
tion, where each resource transaction was recorded in contract.
Lu et al. [31] paid concern on the two-sided cloud market
with multiple alternative cloud providers, based on which a
double auction was designed to match the requirements from
both users and providers. Zhang et al. [32] proposed a profit-
driven two-stage auction process with regard to tiered cloud
storage, where the operations of data storage and access were
both taken into account. Hosseinalipour and Dai [33] mod-
elled the market-oriented interactions amongst cloud users,
managers and providers with a two-stage auction model,
where the interaction between cloud users and managers was
characterized by the options-based sequential auction.

Furthermore, several essential auction properties, includ-
ing budget balance, truthfulness and envy-freeness, should be
taken into account when designing the resource auction mech-
anism. Budget balance implies that the bidding budget of user
would not be violated, which is generally seen as a primary
requirement of resource auction mechanism. Zheng et al. [8]
leveraged the idea of proportional sharing to admit the bud-
get balance, where the overall bidding budget from users was
sufficient to cover the resource instances’ procurement cost.
Arabnejad et al. [34] studied the budget-constrained workflow
scheduling in clouds, where the total workflow budget was dis-
tributed across various partitioned task subsets. Truthfulness
is a critical property used for preventing market manipula-
tion. Feng et al. [35] presented an effective learning approach
for measuring incentive compatibility (i.e., truthfulness) in
auctions, which provided great technical guidance to the auc-
tion mechanism validation. Zhang et al. [36] exploited the
truthfulness of VCG auction into the computation offloading
problem on mobile cloud computing, where the Lyapunov
optimization technique was applied to attack the high com-
plexity of VCG mechanism. Zhu et al. [37] proposed an online
auction mechanism for underutilized IaaS instances for the
sake of maximizing cloud resource utilization, in which the
truthfulness was ensured by sequential posted price mecha-
nisms. Envy-freeness indicates such a fair resource allocation
scheme that each user prefers the resource allocation of her
own to that of others. Baranwal and Vidyarth [38] equalised

Authorized licensed use limited to: University of Exeter. Downloaded on October 25,2023 at 11:51:22 UTC from IEEE Xplore. Restrictions apply.

LI et al.: PRICE-INCENTIVE RESOURCE AUCTION MECHANISM BALANCING THE INTERESTS BETWEEN USERS AND CLOUD SERVICE PROVIDER 2033

Fig. 1. Overview of Cloud Ecosystem and Resource Auction Framework.

the social welfare over various users requesting for cloud
resources (i.e., an envy-free status), through granting var-
ied priorities to distinct users during cloud resource auction.
Yang et al. [39] deployed a consensus revenue estimate strat-
egy in cloud resource auction which enabled the envy-freeness
on heterogeneous VM allocation.

In this article, we intend to consolidate the research of
market-based cloud pricing strategy from the perspective of
resource auction. Different from [27], [29], [31], [33] involv-
ing competitive cloud service providers in the auction, we
focus on maximizing a cloud service provider’s utility, such
that the maximum users are incentivized to be served by the
cloud service provider while a minimum profit rate is guar-
anteed. Besides, compared with [28], [29], [31]–[33] using
discriminatory price auction, we adopt a single-price auction
where cloud resources are valued in the same unit price. The
single-price auction can be more widely accepted, because
of the common sense that identical goods should be iden-
tically valued. Moreover, our price-incentive resource auction
mechanism also satisfies the essential properties of budget bal-
ance, truthfulness and envy-freeness. It is useful to enhance the
robustness of resource auction mechanism.

III. SYSTEM DESIGN AND FORMULATION

A. System Model

High-level Overview: We consider our cloud ecosystem
which works at a time-slotted manner, and the time horizon is
discretized into time slots at the duration of τ , indexed by t.
Resource auction is conducted over time slots. At the begin-
ning of each time slot, each user arbitrarily determines whether
to make the cloud service request. If the service request is
proposed, the user would place the service bid with her QoS
requirement to the cloud service provider. At each time slot,
the cloud service provider aggregates the service bids, and then
decides the spot unit resource price and the resource alloca-
tion scheme across multiple service bids. In response to the

dynamic service bids and energy costs, results of resource pric-
ing and allocation are stipulated to be reevaluated at each time
slot. The cloud service provider would update its decision on
resource pricing and allocation, based on the latest service bids
and energy costs.

Fig. 1 outlines our cloud ecosystem, where the interaction
between the cloud service provider and users is presented. We
identify the resource auction process at each time slot t into
three steps. In Step I, the users who place service bids at the
time slot t inform the cloud service provider of their QoS
requirements and bidding budgets. In Step II, the cloud ser-
vice provider receives the service bids, and determines the spot
unit resource price p(t) and resource allocation scheme during
the time slot t. With the spot unit resource price of p(t), the
cloud service provider decides for each user ui the ai (t) units
of resources to be allocated and bundled as a customized VM
where the user ui is served during the time slot t. The decision
on resource pricing and allocation is made based on a collec-
tive consideration of energy costs and user bids. To reduce
nonessential energy costs and increase the profit earning, idle
physical machines would be switched off into the sleep mode.
In Step III, the cloud service provider notifies the resource
price and allocation result of each user who places the service
bid, and collects the corresponding service payment.

Cloud Users: There are totally N cloud users who propose
the cloud service request, denoted by U = {u1, . . . , uN }. We
assume that, each user ui proposes a single service request,
and the user who proposes multiple service requests can be
regarded as a group of users. The service request of user ui

is specified as a tuple (si , t−i , t+i ,T−
i ,T+

i , bi). The service
type si labels the type of application requested for execu-
tion at cloud. As in [34], [40], we mainly study on the
computation-intensive applications served at the cloud. The
temporal interval [t−i , t+i] is subscribed by the user ui to per-
form the application with the type of si , where t−i ∈ N and
t+i ∈ N respectively indicate the corresponding starting time

Authorized licensed use limited to: University of Exeter. Downloaded on October 25,2023 at 11:51:22 UTC from IEEE Xplore. Restrictions apply.

2034 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 2, JUNE 2021

TABLE I
SUMMARY OF KEY NOTATIONS

slot and the ending time slot. Since the cloud service provider
conducts resource pricing and auction by time slots, thus the
user ui would automatically place her service bid at the begin-
ning of each time slot between [t−i , t+i] to compete for cloud
resources, where bi indicates the bidding budget per time slot.
At each time slot t, a subset of users U(t) ⊂ U place the ser-
vice bid to the cloud service provider. Let N(t) denote the
number of users placing the bid at the time slot t.

During the temporal interval [t−i , t+i], the user ui would
execute a sequence of jobs whose service type is si . The
runtime to complete a single job is differentiated with the
service type si and the number of allocated cloud resources.

According to the regression analysis results in [12] and the
experimental evidence in [41], the runtime to complete a single
job for user ui can be estimated by (1).

Ti (ai (t)) = θsi + φsi · ai (t) +
ηsi

ai (t)
+ ωsi · log(ai (t)) (1)

where θsi , φsi , ηsi and ωsi are regression coefficients specific
to the service type si , and ai (t) represents the number of cloud
resources allocated to user ui during the time slot t.

Each user ui can be served in her own customized
VM [5] assembled by the user-specified amount (i.e., ai (t))
of cloud resources, as in some recently burgeoning cloud plat-
forms [42], [43]. Such a customized VM service is beneficial
to attract more cloud users. Meanwhile, the cloud resource can
be in various forms, including CPU units, memory size, disk
storage, network bandwidth, etc. Enlightened by the degree
of parallelism specified by Spark/Hadoop [44], the amount of
cloud resources ai (t) for allocation can represent the number
of allocated compute slots, each of which is assembled by a
fixed number of varied resources.

Within the service request, the user ui also reports her QoS
requirement as [T−

i ,T+
i], where T−

i , T+
i ∈ R

+. It states
the job runtime that the cloud service provider commits to,
if the user ui ’s service bid is accepted. Specifically, it should
take the time no more than T+

i to complete a user ui ’s job.
Besides, the job runtime which is less than T−

i is needless
for the user ui . Let a+

i and a−i represent the amount of cloud
resources which just respectively enables a job accomplished
within the time of T−

i and T+
i , i.e.,

a+
i = T−1

i

(
T−

i

)
and a−i = T−1

i

(
T+

i

)
.

Based on the above, the user ui has an utility ui (ai (t)) which
indicates her “happiness” towards various resource allocation
results ai (t), formulated by the piecewise function (2) below.

ui (ai (t)) =

⎧
⎨

⎩

ρi
(
a+
i

)
if ai (t) ∈

(
a+
i ,+∞)

ρi (ai (t)) if ai (t) ∈
[
a−i , a+

i

]

0 if ai (t) ∈
[
0, a−i

) (2)

When the allocated cloud resources ai (t) ∈
[
a−i , a+

i

]
,

the user utility ui (ai (t)) is evaluated by the QoS progress
rate ρi (ai (t)) relative to T+

i , as formulated in (3). It is
worth stressing that the QoS progress rate is by no means
proportional to the allocated resources, but usually with
concavity [41].

ρi (ai (t)) =
T+

i

Ti (ai (t))
. (3)

Cloud Service Provider: We restrict our focus on a homo-
geneous set of physical machines managed by the cloud
service provider, as in [26], [45]. Meanwhile, the cloud service
provider generally promises to supply sufficient computational
resources, and the recent studies [46], [47] also indicate that
the resource utilization in large-scale data centers is lower than
50% most of the time. Thus, we assume that the cloud service
provider has infinite resource capacity, where each physical
machine of cloud is equipped with r units of computational
resources. The cloud service provider controls the sleep/active
state of each physical machine over time slots, where the active

Authorized licensed use limited to: University of Exeter. Downloaded on October 25,2023 at 11:51:22 UTC from IEEE Xplore. Restrictions apply.

LI et al.: PRICE-INCENTIVE RESOURCE AUCTION MECHANISM BALANCING THE INTERESTS BETWEEN USERS AND CLOUD SERVICE PROVIDER 2035

physical machines are supplied to users who make cloud ser-
vice requests. At each time slot (i.e., billing cycle) t, the cloud
resources are priced by units as the spot unit resource price
p(t), and ai (t) units of cloud resources are allocated for each
user ui ∈ U(t) during the time slot t. Therefore, as in [20],
the number of active physical machines needed during the time
slot t is estimated by (4).

m(t) =

⌈∑
ui∈U(t) ai (t)

r

⌉

(4)

Let c̃ indicate the average energy cost to operate a physical
machine per time slot, and thus the overall energy cost to per-
form m(t) physical machines during the time slot t is c̃ ·m(t).
The electricity price is dynamically fluctuated over different
time slots [21], [22], denoted by pe(t) which is reasonably
well informed at the beginning of each time slot t. Hence, the
energy bill of the cloud service provider during the time slot t
is expressed as c̃ · pe(t) ·m(t). In addition, at the time slot t,
the cloud service provider collects the service payment from
users, which is p(t) ·∑ui∈U(t) ai (t) in total.

A minimum profit rate γ > 0 is arbitrarily pre-defined by the
cloud service provider according to its profitability objective.
The cloud service provider makes the decision on p(t), ai (t)
and m(t) with the minimum profit rate of γ guaranteed, which
implies the constraint (5) below.

p(t) ·
∑

ui∈U(t)

ai (t) ≥ (1 + γ) · c̃ · pe(t) ·m(t). (5)

Charge: The user ui has a bidding budget bi ∈ R
+, repre-

senting the maximum willing-to-pay monetary expense at each
time slot (i.e., billing cycle). The service payment (p(t)·ai (t))
of user ui at each time slot should not exceed the bidding
budget bi . Then, the net-utility vi (ai (t), p(t)) of user ui is
evaluated by the difference between her utility ui (ai (t)) and
her service payment over her allocated cloud resources ai (t),
such that

vi (ai (t), p(t)) = ui (ai (t))− p(t) · ai (t)
bi

(6)

Note that the service payment of user ui is normalized by
her bidding budget bi , which implies that the service payment
(p(t)·ai (t)) should not exceed the bidding budget bi . By inte-
grating (2) and (6) into account, the net-utility vi (ai (t), p(t))
can be also expressed as (7).

vi (ai (t), p(t))

=

⎧
⎪⎪⎨

⎪⎪⎩

ρi
(
a+
i

)− p(t)·ai (t)
bi

if ai (t) ∈
(
a+
i ,+∞)

ρi (ai (t))− p(t)·ai (t)
bi

if ai (t) ∈
[
a−i , a+

i

]

−p(t)·ai (t)
bi

if ai (t) ∈
[
0, a−i

)
.

(7)

Remark: During the subscription temporal interval [t−i , t+i],
the user ui can arbitrarily adjust her bidding budget based on
the dynamic status of resource competition, to maintain its
resource competitive edge. By a slight abuse of notations, we
use bi to represent the bidding budget rather than bi (t).

B. Optimization Problem

We formulate the resource pricing and auction problem from
the standpoint of the cloud service provider which looks after
the interests of both cloud service provider and users. It targets
at stimulating maximum users outsourcing their application to
cloud while the minimum profit rate of γ is ensured as well.

Before formulating our optimization problem, we firstly
investigate the resource demand of user which reacts to the
cloud pricing setting. In order to incentivize the user ui to
conduct cloud migration, the user ui is supposed to gain the
maximum net-utility over her cloud resource allocation and
payment. Let di (p(t)) represent the user ui ’s resource demand
(in terms of the amount of resources) under the spot unit
resource price p(t), where the user ui ’s net-utility is maxi-
mized. We can formulate the user ui ’s resource demand under
the spot unit resource price p(t) as:

di (p(t)) � arg max
ai (t)

vi (ai (t), p(t)) (8)

With the resource demand di (p(t)) of each user defined, our
resource pricing and auction problem can be formulated as
Problem P1. The resource price p(t) and the resource alloca-
tion scheme A(t) = 〈ai (t)〉ui∈U(t) are a couple of decision
variables correlatively solved at each time slot t, where the
resource allocation scheme A(t) is resolved based on user
demands under a determined resource price p(t).

max
ai (t),p(t)

∑

ui∈U(t)

I{ai (t)>0} (P1)

s.t. p(t) ·
∑

ui∈U(t)

ai (t) ≥ (1 + γ) · c̃ · pe(t) ·m(t)

(C1.1)

ai (t) = di (p(t)) ∀ui ∈ U(t) (C1.2)

The objective of Problem P1 maximizes the number of users
served at cloud, where I{ai>0} is the indicator function return-
ing 1 when ai > 0, otherwise 0. Constraint C1.1, which is
derived from (5), claims the minimum profitability objective
of the cloud service provider. Constraint C1.2 indicates each
user purchases cloud resources on a voluntary basis, where the
amount of purchased cloud resources equals to her demand.

Solving the above resource pricing and auction problem is
non-trivial due to the following three aspects. Firstly, Problem
P1 maps to the bin packing problem, which is NP-hard. The
physical machines at cloud are conceived as bins, and each
user’s resource demand regarded as the object requires to be
packed into the bins. Resulting from the NP-hardness of bin
packing problem, Problem P1 is NP-hard as well. The sec-
ond challenge results from the concavity and segmentation
of the net-utility function vi (·). In Problem P1, the amount
of purchased cloud resources ai (t) is determined for each
user ui based on her own net-utility maximization, which
complicates the problem solving. The last challenge is embod-
ied in the complex correlation between the two families of
decision variables p(t) and ai (t). The decision on p(t) deter-
mines the resource allocation (demand) ai (t). As a return, the
resource allocation scheme A(t) = 〈ai (t)〉ui∈U(t) decides the

Authorized licensed use limited to: University of Exeter. Downloaded on October 25,2023 at 11:51:22 UTC from IEEE Xplore. Restrictions apply.

2036 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 2, JUNE 2021

Fig. 2. Overview of Price-Incentive Resource Auction Mechanism.

optimization result
∑

ui∈U(t) I{ai>0}, and is closely related
to whether the cloud service provider’s minimum profit rate γ
is satisfied under the price setting of p(t). Given the above,
we need to design a resource auction mechanism to solve this
problem in an efficient and effective manner.

Remark: Although the objective of our optimization
problem is not to maximum the cloud service provider’s rev-
enue, the formulation of Problem P1 has practical relevance
from the perspective of the cloud service provider. First, from
the viewpoint of cloud ecosystem, our Problem P1 is aimed
to motivate the maximum users served at cloud, which is con-
tributive for the cloud service provider to gain its market share
in the cloud marketplace. Second, we consider the scenario
where the user volunteers to purchase a certain amount of
cloud resources maximizing her net-utility. Compared with a
pure pursuit of revenue maximization regardless of the user
interests, our scenario is much closer to the realistic cloud mar-
ketplace. Third, a minimum profit rate γ is defined to ensure
the interest of cloud service provider. The minimum profit rate
γ can be treated as the parameter taking the trade-off between
the interests of users and the cloud service provider.

IV. MECHANISM DESIGN

A. Mechanism Overview

Our resource auction mechanism is aimed at incentiviz-
ing the maximum cloud users while a minimum profit rate γ

should be guaranteed, as formulated in Problem P1. Problem
P1 belongs to the bin packing problem, which has non-
polynomial computation complexity. Given this, we shift our
focus on designing an efficient resource auction mechanism
for Problem P1.

Fig. 2 outlines our price-incentive resource auction mech-
anism. We first need to clarify the rational strategy of cloud
resource purchase, exploring how many cloud resources each
user demands for under a certain determined resource price.
According to our optimization problem P1, each user pur-
chases the amount of cloud resources according to her demand
with her own net-utility maximized. The amount of required
cloud resources should be efficiently solved out, but the
segmentation and concavity of the net-utility function vi (·)
bring computational challenges. In view of this, we exten-
sively study the rational strategy of cloud resource purchase
in Section IV-B.

While the rational cloud resource purchase strategy con-
cerns about how each user purchases resources achieving
her own net-utility maximization, our cloud resource auc-
tion algorithm is price-incentive and focuses on pricing the
cloud resource from the high level. Each user’s resource
demand/allocation can be effectively regulated. The detailed
design for our resource auction algorithm is introduced in
Sections IV-C and IV-D. In brief, our price-incentive resource
auction algorithm is identified by two main phases to make

Authorized licensed use limited to: University of Exeter. Downloaded on October 25,2023 at 11:51:22 UTC from IEEE Xplore. Restrictions apply.

LI et al.: PRICE-INCENTIVE RESOURCE AUCTION MECHANISM BALANCING THE INTERESTS BETWEEN USERS AND CLOUD SERVICE PROVIDER 2037

the decision on resource pricing and allocation, summarized
as follows.

• In Phase 1, the maximum subset of users who can be
served at cloud is estimated in a crude but efficient
manner.

– The cloud service provider should satisfy the QoS
requirement for the maximum users, without break-
ing the price floor 	p
 (detailed later). Based on this
criteria, the estimated maximum cloud user subset
Û(t) is obtained.

• In Phase 2, the spot unit resource price p(t) and resource
allocation scheme A(t) are further finalized.

– Given the estimation result Û(t) in Phase 1, the cloud
service provider further finalizes the maximum cloud
user subset Ũ(t), where the minimum profit rate γ
is assuredly guaranteed.

– The spot unit resource price p(t) is also optimized
which helps to earn as much revenue as possible. The
corresponding resource allocation scheme A(t) =
〈ai (t)〉ui∈U(t) is obtained via simulating each user’s
rational cloud resource purchase.

B. Rational Cloud Resource Purchase Strategy

We intend to clarify how many cloud resources are
demanded by each user under a certain determined resource
price. It is assumed that the spot unit resource price has been
determined as p(t). As expressed in (8), each user ui deter-
mines her resource demand di (p(t)) by solving a net-utility
maximization problem. Indicated by (6) and (7), the user ui ’s
net-utility vi (ai (t), p(t)) is jointly associated with the QoS
gain and the service payment, and varies with the amount of
allocated resources ai (t). To obtain the optimal ai (t) maxi-
mizing the net-utility, we divide the following two cases into
discussion.

• Case 1: The user ui stretches her budget bi to purchase
the maximum amount of cloud resources which is less
than a−i .

– The user ui ’s QoS requirement [T−
i ,T+

i] cannot
be satisfied, where the net-utility vi (ai (t), p(t))
decreases with ai (t). The user ui would gain a
negative net-utility if the user ui purchases cloud
resources. Thus, the user ui tends to be rejected at
the time slot t, and abandons cloud migration with
ai (t) = 0.

• Case 2: The user ui has a budget to purchase ai (t) >
a−i units of cloud resources with her QoS requirement
satisfied.

– We first demonstrate that the user ui could not pur-
chase the amount of cloud resources greater than a+

i .
Although the user ui may afford to purchase ai (t) >
a+
i units of cloud resources, the amount of purchased

cloud resources over a+
i is needless and merely

results in disutility instead, because the user ui ’s QoS
gain has been overfulfilled beyond her requirement
T−

i . Hence, purchasing ai (t) > a+
i units of cloud

resources contradicts with the objective of net-utility
maximization for the user ui .

– Thus, the optimal ai (t) maximizing the user ui ’s
net-utility should be figured out within [a−i , a+

i].
According to (7), finding out the optimal ai (t) is to
balance the trade-off between the QoS gain and the
service payment. However, since the QoS progress
function ρi (ai (t)) (see Eq. (3)) representing the QoS
gain is concave in general, it is intractable to solve
out the optimal ai (t) which maximizes the user ui ’s
net-utility.

From now on, we get started on attacking the intractabil-
ity to solve the optimal ai (t) for the Case 2. Within ai (t) ∈
[a−i , a+

i], the user ui would gain much more QoS progress
ρi (ai (t)) with the increase of ai (t) while a higher ser-
vice payment is charged in the meantime. Since the QoS
progress function ρi (ai (t)) is a concave function, thus the
optimal ai (t) can be a breakeven resource allocation point
where the growth rate of QoS progress ρ′i (ai (t)) exactly
counteracts the increase rate of normalized service payment
p(t)/bi . If such a breakeven point doesn’t exist, that is to
suggest ρ′i (a

−
i) ≤ p(t)/bi . Here, the optimal ai (t) should be

a−i . To summarize, the unique optimal solution for ai (t) is
admitted as:

{
ai (t) = a−i if ρ′i

(
a−i

) ≤ p(t)/bi
ρ′i (ai (t)) = p(t)/bi if ρ′i

(
a−i

)
> p(t)/bi

(9)

After analyzing the unique existence of the optimal ai (t),
we expect to propose a computational-efficient approach to
solve out the optimal ai (t) for the user ui . Here, we formu-
late the net-utility maximization problem P2 which can figure
out the optimal ai (t). Constraint 2.1 ensures the budget bal-
ance, meaning that the service payment should not exceed the
bidding budget. Constraint C2.2 specifies the feasible range of
ai (t) ∈ [a−i , a+

i].

max
ai (t)

ρi (ai (t))− p(t) · ai (t)
bi

(P2)

s.t. p(t) · ai (t) ≤ bi (C2.1)

ai (t) ∈
[
a−i , a+

i

]
(C2.2)

It can be easily identified that Problem P2 is a convex
optimization problem, in accordance with the standard form
of convex optimization problem [48] (The proof is omit-
ted). Then, we can solve the convex optimization problem P2
through searching for the solution satisfying the Karush-Kuhn-
Tucker (KKT) conditions [48]. Henceforth, we can acquire
the optimal ai (t) maximizing the user ui ’s net-utility for the
Case 2, by searching for the solution which satisfies the KKT
conditions of Problem P2.

Briefly speaking, we epitomize the rational cloud resource
purchase strategy of each user when a certain resource
price p(t) has been determined. In the Case 1, the user
ui abandons cloud migration with ai (t) = 0. In the Case
2, the user ui determines the amount of purchased cloud
resources ai (t) by solving the KKT conditions of Problem
P2.

Computation Complexity Analysis: In the rational cloud
resource purchase strategy, we mainly focus on the compu-
tation complexity in the Case 2 including the KKT-condition

Authorized licensed use limited to: University of Exeter. Downloaded on October 25,2023 at 11:51:22 UTC from IEEE Xplore. Restrictions apply.

2038 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 2, JUNE 2021

solving. Generally, the computation complexity of solving
the KKT conditions exponentially increases with the num-
ber of inequation constraints in the convex optimization
problem [49]. Since there are K = 3 inequation constraints
(i.e., the upper bound of Constraint C2.1, and the upper and
lower bound of Constraint C2.2) in Problem P2, then we can
solve Problem P2 for the user ui by searching for the solu-
tion which satisfies the KKT conditions at the computation
complexity of O(2K) = O(1). Given this, with a spot unit
resource price p(t) determined, we sequentially calculate the
resource demand ai (t) = di (p(t)) of each user ui ∈ U(t) by
solving the corresponding Problem P2, requiring the overall
computation complexity of O(N(t)). Further, Problem P2 of
each user ui is independent with no correlation, therefore the
resource demand of each user ui ∈ U(t) can be also solved
in parallel, in the case of which the computation complexity
is reduced to O(1).

Remark: Because of the space limitation, the more detailed
formulation and analysis of KKT conditions for Problem
P2 is presented in Appendix A of the supplementary mate-
rial.

C. Phase 1 - Estimate the Maximum Subset of Cloud Users

At the beginning of each time slot t, the cloud service
provider collects the service bids proposed by the users
ui ∈ U(t). Each user ui ∈ U(t) has the heterogeneous bidding
budget bi and various resource requirement [a−i , a+

i]. We can
obtain each user ui ’s maximum acceptable price p+

i for unit
cloud resource, formulated by (10). If the spot unit resource
price p(t) is set higher than p+

i , then the user ui cannot afford
to purchase at least a−i units of cloud resources to meet
her QoS requirement, and hence abandons cloud migration
with ai (t) = 0.

p+
i =

bi
a−i

for the user ui ∈ U(t) (10)

We order the users ui ∈ U(t) based on p+
i in an ascend-

ing rank Θ = < u[1], u[2], . . . , u[N (t)] > , where u[i] indicates
the user ranked at the i-th place in Θ. If p(t) ≤ p+

[i]
, then

the users u[j] (j ≥ i) could purchase cloud resources with
their QoS requirements fulfilled. But if p(t) > p+

[i]
, then the

users u[j] (j ≤ i) are unaffordable to purchase enough cloud
resources meeting their QoS requirements, hence having to
abandon cloud migration.

In order to estimate the maximum subset of users served
at cloud, we consider the minimum profit rate γ required
by the cloud service provider. Here, we put forward a price
floor as 	p
 = c̃ · pe(t) · (1 + γ)/r , which is used to com-
pare with each user u[i]’s maximum acceptable price p+

[i]
. The

price floor indicates the unit resource price which equally
splits a physical machine’s bottom price c̃ · pe(t) · (1 + γ).
If p+

[i]
< 	p
 for the user u[i], then the service bid of user

u[i] cannot be accepted by the cloud service provider at the
time slot t. In this phase, we intend to filter out all the users
u[i] whose p+

[i]
< 	p
 in the order Θ. Specifically, the criti-

cal user u[i ′′] amongst users should be figured out, satisfying

that

p+
[i ′′] ≥ 	p
 and p+

[j]
< 	p
 (

j < i ′′
)

(11)

In other words, the service bids of users u[j] (j < i ′′) are
rejected. In the end, an estimation of the maximum cloud
user subset is presented as

Û(t) = 〈u[i ′′], u[i ′′+1], . . . , u[N (t)]〉. (12)

D. Phase 2 - Finalize the Spot Unit Resource Price and
Resource Allocation Scheme

Based on the estimation result in Phase 1, we further final-
ize the maximum cloud user subset, together with the spot
unit resource price and resource allocation scheme deter-
mined as well. Before introducing the details, we preliminarily
present the resource price spectrum which enables various
cloud user subsets. Let [p(t)−, p(t)+] represent the resource
price spectrum of p(t) which could exactly empower the
users {u[i], u[i+1], . . . , u[N (t)]} willing to be served at cloud.
Recall that, the maximum acceptable price for the user u[i]

is p+
[i]

, as formulated in (10). If the spot unit resource price

p(t) ≤ p+
[i]

, then the users including u[j] (j = i , i +
1, . . . ,N (t)) would like to purchase cloud resources with
their QoS requirements satisfied. Therefore, the resource price
spectrum [p(t)−, p(t)+] is defined as follows.

p(t)+ = p+
[i]

p(t)− =

{
c̃·pe(t)·(1+γ)

r if i = 1
p+
[i−1]

+ σ otherwise

where σ > 0 can be a minuscule positive number just making
p+
[i−1]

+ σ > p+
[i−1]

. Meanwhile, p(t)− = 	p
 when i = 1.
It is worth noting that, the price floor 	p
 (defined in Phase

1) is no more than a necessary condition ensuring the min-
imum profit rate γ. Let us consider the following scenario,
where

∑
ui∈U(t) ai (t)/r = 50.3 indicates that m(t) = 51.

Here, the cost plus the required minimum profit over the 0.7r
units of idle cloud resources should be additionally shared
by the users who purchase cloud resources. It follows that,
the price floor 	p
 is insufficient to provide the γ-profit-rate
guarantee.

Therefore, we need to further ascertain the maximum cloud
user subset based on the rough estimation in Phase 1. The
basic idea of finalizing the maximum cloud user subset is
to gradually downscale the subset of cloud users until the
minimum profit rate γ is assuredly achieved. In specific, we
initially determine the cloud user subset as our estimated
maximum cloud user subset Û(t) (i.e., {u[i ′′], ..., u[N (t)]}).
Here, if the minimum profit rate γ can be achieved at a
resource price between the corresponding resource price spec-
trum [p(t)−, p(t)+], then the estimated maximum cloud user
subset in Phase 1 is literally the maximum cloud user subset,
i.e., Ũ(t) ← Û(t). Otherwise, we downsize the cloud user
subset by rejecting the service request of user u[i ′′], and then
similarly testify whether it is able to guarantee the minimum
profit rate γ in this time. If not, the cloud user subset would
be further downsized by removing the user u[i ′′+1]. The above

Authorized licensed use limited to: University of Exeter. Downloaded on October 25,2023 at 11:51:22 UTC from IEEE Xplore. Restrictions apply.

LI et al.: PRICE-INCENTIVE RESOURCE AUCTION MECHANISM BALANCING THE INTERESTS BETWEEN USERS AND CLOUD SERVICE PROVIDER 2039

process would not quit the loop until the minimum profit rate
γ is assured satisfied, or rejecting all proposed service bids.
The final maximum subset of cloud users is determined as
Ũ(t).

When finding out the unit resource price p(t) between
[p(t)−, p(t)+] which makes the minimum profit rate γ sat-
isfied, it is preferable to figure out the optimal unit resource
price which achieves the higher revenue for the cloud service
provider. Therefore, the revenue maximization problem is for-
mulated by Problem P3, where the cloud service provider’s
revenue π is defined in C3.1. Problem P3 not only specifies
the resource price spectrum p(t) ∈ [p(t)−, p(t)+] as shown
in C3.2, but also has the same constraints as Problem P1.

max
ai (t),p(t)

π (P3)

s.t. π = p(t) ·
∑

ui∈U(t)

ai (t) (C3.1)

p(t)− ≤ p(t) ≤ p(t)+ (C3.2)

(C1.1)− (C1.2)

Note that, in Constraint C1.2, the segmentation and con-
cavity of the net-utility function vi (·) makes our revenue
maximization problem intractable. Enlightened by the unique
structure of this optimization problem, however, we put for-
ward a simple but effective Revenue-Optimal Resource Pricing
algorithm namely RORP which reaches a near-optimal rev-
enue. The pseudocode of the RORP algorithm is shown in
Algorithm 1. It mainly consists of two steps as follows.

• Step 1: Discretize the continuous resource price spec-
trum [p(t)−, p(t)+] into X candidate prices p̂x , x =
1, 2, . . . ,X (Line 1-3).

• Step 2: Find out the candidate price p̂(t) = p̂x amongst
X candidate prices, under which the maximum revenue
is gained (Line 4-14).

Technically, the resource price spectrum [p(t)−, p(t)+] is
discretized into X discrete candidate prices, where X is
calculated based on (13).

X =

⌊
log

(
p(t)+/p(t)−

)

log(1 + ε)

⌋

+ 1 (13)

Let p̂x denote the x-th candidate price, which is expressed
in (14). Note that, ε > 0 is a constant parameter which
is configured according to the required trade-off between
computation efficiency and approximation ratio. A smaller ε
implies a better approximation ratio obtained by RORP algo-
rithm, which also requires a higher price sampling intensity
over [p(t)−, p(t)+] (i.e., a greater X) incurring a greater
computation complexity (detailed later in Theorem 1).

p̂x = p(t)+ · (1 + ε)1−x (14)

The RORP algorithm respectively calculates the revenue π
associated with each candidate price p̂x . After that, the candi-
date price p̂(t) = p̂x gaining the maximum revenue would be
selected as the final spot unit resource price p(t). The corre-
sponding resource allocation scheme A(t) = 〈ai (t)〉ui∈U(t)
is acquired through simulating each user’s rational cloud
resource purchase under p(t) = p̂(t).

Algorithm 1: Revenue-Optimal Resource Pricing
Algorithm (RORP)

Input: Resource price spectrum
[
p(t)−, p(t)+

]
.

Output: Resource price p(t);
Resource allocation scheme A(t).

1 Initialize π ← 0, p(t)← null, A(t)← null;
2 Calculate the number of discrete prices X based on (13);

3 Discretize the continuous price spectrum
[
p(t)−, p(t)+

]
into

X prices as p̂x ← p(t)+ · (1 + ε)1−x , x = 1, 2, . . . ,X ;
4 for each x = {1, 2, . . . ,X } do
5 for each ui ∈ U(t) do
6 if p+

i ≤ p̂x then
7 Acquire the user ui ’s rational resource allocation

(demand) ai (t) = di (p̂x) solving the KKT
conditions of Problem P2;

8 else
9 ai (t)← 0;

10 if
p̂x ·∑ui∈U(t) ai (t)

(1+γ)
≥ c̃ · pe (t) ·

⌈∑
ui∈U(t) ai (t)

r

⌉
and

p̂x ·∑ui∈U(t) ai (t) > π then
11 π ← p̂x ·∑ui∈U(t) ai (t);
12 p(t)← p̂x ;
13 A(t)← 〈ai (t)〉ui∈U(t);

14 return p(t) and A(t);

TABLE II
APPROXIMATION RATIO VS. COMPUTATIONAL EFFICIENCY

Theorem 1: The RORP algorithm can achieve an approxi-
mation ratio of (1 + ε) on cloud service provider’s revenue
maximization, together with the computation complexity of
O(X) supposing that N(t) users conduct the rational cloud
resource purchase in parallel.

Proof: Suppose the revenue-optimal spot unit resource price
is p∗(t), under which the cloud service provider gains the
optimal revenue as π∗. There must exist an integer y ∈ [1,X]
such that p(t)+ · (1 + ε)−y ≤ p∗(t) ≤ p(t)+ · (1 + ε)1−y .
In our RORP algorithm, p̂(t) is the approximate solution
selected from the X candidate discrete prices, under which
the corresponding revenue is π̂. Here, we can obtain that

π∗ = p∗(t)×
∑

ui∈U(t)

di (p∗(t))

≤
(
p(t)+ · (1 + ε)1−y

)
×

∑

ui∈U(t)

di (p∗(t))

≤ (1 + ε)× (
p(t)+ · (1 + ε)−y)

×
∑

ui∈U(t)

di
(
p(t)+ · (1 + ε)−y)

(15)

≤ (1 + ε)× π̂

Authorized licensed use limited to: University of Exeter. Downloaded on October 25,2023 at 11:51:22 UTC from IEEE Xplore. Restrictions apply.

2040 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 2, JUNE 2021

Algorithm 2: Price-Incentive Resource Auction Algorithm
(PIRA)

Input: Service bids of users U(t) in the time slot t .
Output: Resource price p(t);

Resource allocation scheme A(t).
1 // Phase 1
2 Initialize i ′′ ← N (t)− 1;
3 for each i = {1, 2, . . . ,N (t)} do
4 Pick out the user u[i] ranked at the i -th place in the

ascending-ordered Θ;
5 if p+

[i]
≥ c̃ · pe(t) · (1 + γ)/r then

6 i ′′ ← i ;
7 break;

8 else
9 Reject the service bid of user u[i];

10 // Phase 2
11 for each i = {i ′′, i ′′ + 1, . . . ,N (t)} do
12 p(t)+ ← p+

[i]
;

13 if i = i ′′ then
14 p(t)− ← c̃ · pe(t) · (1 + γ)/r ;

15 else if i ≥ i ′′ + 1 then
16 p(t)− ← p+

[i−1]
+ σ;

17 p(t), A(t) ← RORP(p(t)−, p(t)+);
18 if p(t) =null and A(t) =null then
19 Reject the service bid of user u[i];

20 else
21 Accept the service bid of users

Ũ(t) =
{
u[j]

}N (t)

j=i
;

22 return p(t) and A(t) ;

23 return null;

where the inequality (15) arises from the fact that the user
resource demand is non-increasing with the unit cloud resource
price. Henceforth, the approximation ratio of our RORP algo-
rithm is proved to be (1 + ε).

In the RORP algorithm, the revenue of X candidate prices
needs to be respectively calculated by means of simulating
each user’s rational cloud resource purchase. Under an arbi-
trary candidate price p̂x , it takes the time of O(1) to simulate
N(t) users conducting the rational cloud resource purchase in
parallel. To summarize, the parallel computation complexity
of the RORP algorithm is O(X).

Generally speaking, we novelly convert the non-convex
optimization problem with a continuous decision range into
the one with a discrete decision domain, and thus devise a
computational-efficient approximate algorithm called RORP to
acquire a near-optimal result. As indicated in Theorem 1, the
constant parameter ε strikes a trade-off between computational
efficiency and approximation ratio, as exemplified in Table II.
With the RORP algorithm, the final spot unit resource price p(t)

together with the resource allocation scheme A(t) is derived in
Phase 2.

From the above, our price-incentive resource auction mech-
anism proceeds in the two phases which are Phase 1 and
Phase 2. We encapsulate the details of this two phases in
the Price-Incentive Resource Auction algorithm namely PIRA,
as shown in Algorithm 2. The PIRA algorithm is executed at
each time slot t.

Overall Computation Complexity Analysis: The PIRA algo-
rithm comprises Phase 1 and Phase 2. In Phase 1, we assume
that N1(t) users are excluded from the cloud user subset U(t),
where N1(t) ≤ N (t). When deciding whether to eliminate a
user’s service bid, we need to justify whether the corresponding
p+
[i]

is no less than 	p
. Therefore, the computation complexity
of the Phase 1 is O(N1(t)). In Phase 2, we suppose that X
discrete candidate prices are totally put into trial before the final
spot unit resource price p(t) is determined. At each temporary
price setting, we simulate each user’s rational cloud resource
purchase in parallel, takeing the time of O(1). Thus, the computa-
tion complexity is O(X) in Phase 2. To sum up, the computation
complexity is O(N1(t) + X) for the PIRA algorithm.

E. Properties of Resource Auction Mechanism

Theorem 2 (Budget Balance): The user’s bidding budget bi
can always cover the service payment charged for the amount
ai (t) of purchased cloud resources.

Proof: Given the space limitation, the detailed proof for
Theorem 2 is presented in Appendix B of the supplementary
material.

Theorem 3 (Truthfulness): The user has no incentive to
misreport her bidding budget.

Proof: Given the space limitation, the detailed proof for
Theorem 3 is presented in Appendix C of the supplementary
material.

Theorem 4 (Envy-Freeness): The user always prefers her
own purchased amount of resources to that of others.

Proof: Given the space limitation, the detailed proof for
Theorem 4 is presented in Appendix D of the supplementary
material.

V. EVALUATION

A. Experimental Setup

Performance Data: Since the AI/ML jobs are known for
their high computation intensity [50], [51], thus we choose
eight representative AI/ML-related applications provided in
Spark MLlib [52] as the service types si proposed by service
requests, which are Classification, Naive.Bayes, Regression,
KMeans, Spearman, PCA, ALS and Summary.Stats. A recent
performance prediction framework called Ernest [12] proposed
a general job performance model for a variety of computation-
intensive applications including these eight service types.
Through parametric regression analysis, the relationship
between the job runtime and the number of allocated resources
is characterized as (1), where the regression coefficients θsi ,
φsi , ηsi and ωsi of our eight service types are explicitly
given in [12]. Therefore, in our experiments, a service request
is proposed with the service type which is randomly drawn

Authorized licensed use limited to: University of Exeter. Downloaded on October 25,2023 at 11:51:22 UTC from IEEE Xplore. Restrictions apply.

LI et al.: PRICE-INCENTIVE RESOURCE AUCTION MECHANISM BALANCING THE INTERESTS BETWEEN USERS AND CLOUD SERVICE PROVIDER 2041

Fig. 3. Overview of Trace Data.

from the Classification, Naive.Bayes, Regression, KMeans,
Spearman, PCA, ALS and Summary.Stats.

Workload Data: For the trace-driven experiments, we extract
the trajectory of service requests from the public Microsoft
Azure Cluster trace dataset [53]. The public Azure dataset
documents the VM running status in one of Azure’s geograph-
ical regions during one month from November 16, 2016 to
February 16, 2017, in which the activities of VM creation and
deletion are recorded across time. In the Azure dataset, the
subscription is a natural unit representing an Azure subscriber
who performs logically-related jobs. The Azure subscriber can
create several VMs based on their demands across time, where
the number of vCPU cores per VM can be designated by the
Azure subscriber.

We conceive each of VM created by the Azure subscriber as
a single service request, and the VM lifetime is regarded as the
temporal interval [t−i , t+i] subscribed by the service request.
When the VM created by the Azure subscriber is active during
the time slot, then a service bid would be correspondingly
placed at this time slot. Additionally, the minimum resource
demand a−i of a service request is set based on the number of
vCPU cores allocated to the VM, while the maximum resource
demand a+

i is scaled as 1.75×a−i . The corresponding QoS
requirement [T−

i ,T+
i] of the service request is mapped from

[a−i , a+
i], based on (1).

The duration τ of each time slot is set as one hour, in accor-
dance with the minimum billing cycle of Microsoft Azure [54].
To simplify the experiment, we choose 336 time slots (i.e., 14
days) of data from the Azure workload trace, and randomly
select a fraction of 100 Azure subscribers from the entire
dataset. Fig. 3(a) shows the number of service bids placed
by these 100 Azure subscribers across time slots, where there
are approximately 300 to 400 service bids concurrently placed
in a time slot. Meanwhile, Fig. 3(b) demonstrates the trajec-
tory of aggregated resource demands from our selected 100
Azure subscribers.

Electricity Price Data: We collect the real-world trace data
for electricity price from the Independent Electricity System
Operator (IESO) [55], who manages the Ontario’s power

Fig. 4. Number of Accepted Bids, and Cloud Service Provider’s Revenue
under Different Minimum Profit Rates γ.

system. The Ontario’s hourly electricity price is updated by
IESO per hour, and the electrical customers should pay for
their energy costs according to the instant hourly electricity
price. For the trace-driven experiments, we adopt the Ontario’s
hourly electricity prices from February 10 to February 23,
2020 for 14 days, aligned with our selected Azure workload
data. The trace of Ontario’s hourly electricity prices is illus-
trated in Fig. 3(c). Note that, the average value over the trace
data for Ontario’s hourly electricity prices is 0.1262 $/kWh,
with the standard deviation of 0.0106 $/kWh. At each run
of our numerical experiments, the electricity price (in unit
of $/kWh) is randomly drawn from a normal distribution as
N (0.1262, 0.01062).

Parameter Settings: For the cloud service provider, each
physical machine of cloud has a resource capacity r of 10.
Each physical machine is assumed to expend an average of
500 Watts based on [56]. Hence, the average energy cost c̃ to
operate a physical machines is estimated as 1.2 * 500 = 600
Watts, where the power effectiveness usage PUE is consid-
ered as 1.2 according to [57]. Meanwhile, the minimum profit
rate γ required by the cloud service provider is configured as
0.2 (unless specified). With regard to the bidding budget, we
follow the assumption adopted in [8], [39] to generate the bid-
ding budget bi (in unit of $) for each service request according
to a normal distribution of ((a−i + a+

i)/2) · N (0.02, 0.0152).
The approximation ratio (1 + ε) is set as 1.02 in the RORP
algorithm.

B. Numerical Experiments

To clearly demonstrate the experimental result in numerical
experiments, we simply perform our PIRA algorithm for one
time slot here. Each of the following experimental results is
averaged over several runs to reflect the randomized nature of
auction.

1) Impact of Minimum Profit Rate γ: We firstly study the
impact of minimum profit rate γ on the auction outcome, i.e.,
the number of accepted bids and the cloud service provider’s
revenue. Here, we set 1,000 users concurrently placing ser-
vice bids to the cloud in a time slot. Fig. 4 demonstrates the
auction outcome under different minimum-profit-rate settings,
where each of experimental results is averaged over 200 runs.
It can been observed that, less service bids are accepted by
the cloud when γ is set higher. This is because more service
bids with relatively limited budgets are rejected. The rejected
service bids cannot afford to satisfy such a high profitability
objective γ. But in the meantime, the revenue earned by the

Authorized licensed use limited to: University of Exeter. Downloaded on October 25,2023 at 11:51:22 UTC from IEEE Xplore. Restrictions apply.

2042 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 2, JUNE 2021

Fig. 5. Performance Comparison between our RORP Algorithm, and the
Simulated Annealing Algorithm [58].

cloud service provider increases with a higher γ configured. It
happens because the cloud service provider sells more cloud
resources to bidders with the higher budget, for the sake of its
higher profitability objective γ. The above experimental anal-
ysis matches with our expectation that γ should balance the
interests of users and the cloud service provider.

2) Evaluation of RORP Algorithm Performance: Our RORP
algorithm plays an important part in our resource auction
mechanism. With the maximum cloud user subset determined
in the PIRA algorithm, our RORP algorithm is responsible for
finding out an optimal resource price which gains an approx-
imate maximum revenue. Given its importance, we intend to
evaluate the effectiveness and efficiency of our RORP algo-
rithm. In specific, we conduct the comparative experiment with
a state-of-the-art algorithm named Simulated Annealing [58].
As a renowned nonlinear optimization approach, the Simulated
Annealing algorithm can approximate the optimal price of
unit cloud resource where the highest revenue is earned. Note
that, our comparative experiment is performed on Windows
10 where the processor is Intel Core i7-5500U 2.4GHz with
the memory size of 12 GB.

Fig. 5 shows the comparative results between our RORP
algorithm and the Simulated Annealing algorithm. Note that,
each experimental result about our RORP algorithm is taken
an average over 200 runs, while that about the Simulated
Annealing algorithm is averaged over 10 runs. In terms of
algorithmic effectiveness, we compare these two competitive
algorithms on the cloud service provider’s revenue. Under
varied scales of bidding users, the difference on the gained
revenue between RORP and Simulated Annealing is extremely
small. Nevertheless, from the aspect of algorithmic efficiency,
a significant quantitative difference on the execute time exists
between these two approaches. Here, the execute time imply-
ing the computation cost is measured, where each user’s
resource demand is sequentially calculated under a certain
resource price. Our RORP algorithm’s execute time is far less
than that of the Simulated Annealing algorithm, while our
RORP algorithm gains the revenue with little difference to the
Simulated Annealing algorithm. It implies the advancement of

our RORP algorithm. Also, our RORP algorithm is expected
to gain much less execute time when each user’s resource
demand is resolved in parallel.

3) Auction Property Validation: We further conduct numer-
ical analysis to experimentally verify the properties of budget
balance and envy-freeness for our price-incentive resource auc-
tion mechanism. Similar experimental results can be obtained
in the subsequent trace-based experiment as well. Here, each
experimental result is averaged over 200 runs.

Budget Balance: We set 100 users who concurrently place
service bids to the cloud service provider in a time slot. The
service payment determined by the PIRA algorithm and the
bidding budget are compared across different users in Fig. 7.
All these 100 users’ bidding budgets respectively cover the
service payment of their own, where a user averagely con-
sumes 64.71% of her own bidding budget for service payment.
Given this, the property of budget balance is verified through
experiments.

Envy-Freeness: To better demonstrate the numerical result
which satisfies the property of envy-freeness, we simplify the
experimental scenario with eight users u1 ∼ u8 concurrently
placing service bids. Each user ui would be respectively allo-
cated ai units of cloud resources through our PIRA algorithm,
if her service bid is accepted. The user ui gains the net-
utility vi (ai) on her own allocated resources ai , with her
QoS requirement fulfilled and her bidding budget balanced.
For each user ui , the net-utility vi (ai) on her own allocated
resources ai is compared with the net-utility vi (aj) on other
users’s allocated resources aj where j �= i , as shown in Fig. 6.
It can be seen that, the net-utility vi (ai) on her own pur-
chased resources ai is always the greatest, no matter for the
user u1 ∼ u8, which embodies the property of envy-freeness
during resource auction.

C. Simulation Experiments Using Real Trace Data

Based on the real trace data, we then study the effective-
ness of our price-incentive resource mechanism. In specific, we
investigate the performance of our proposed PIRA algorithm
respectively from the both sides of cloud service provider and
users. For the cloud service provider, we testify whether the
minimum profit rate γ can be ensured by the PIRA algorithm
over time slots. For users, we evaluate the service capability of
our PIRA algorithm, measured by the number of the accepted
service bids. A state-of-the-art solution called Revenue-Max is
compared with our PIRA algorithm. The Revenue-Max algo-
rithm is an unilateral solution which only intends to gain the
maximum revenue for the cloud service provider regardless
of the user interests. The objective of revenue maximization
in the Revenue-Max algorithm is achieved by means of the
same approximate technique adopted in our proposed RORP
algorithm.

Fig. 8(a) shows the cloud service provider’s revenue earned
under our PIRA algorithm across time slots, comparing with
the Revenue-Max algorithm and the baseline of minimum
profit-rate guarantee. The minimum profit rate γ is pre-
configured by the cloud service provider according to its
profitability goal. It can be seen that the revenue baseline
corresponding to the minimum profit-rate guarantee fluctuates

Authorized licensed use limited to: University of Exeter. Downloaded on October 25,2023 at 11:51:22 UTC from IEEE Xplore. Restrictions apply.

LI et al.: PRICE-INCENTIVE RESOURCE AUCTION MECHANISM BALANCING THE INTERESTS BETWEEN USERS AND CLOUD SERVICE PROVIDER 2043

Fig. 6. Comparison of Net Utility on Various Resource Allocations across Different Users.

Fig. 7. Service Payment v.s. Bidding Budget across Different Users.

with the hourly-updated electricity price. The cloud service
provider’s revenue under our PIRA algorithm is always above
the minimum profit-rate baseline, which meets our expecta-
tion for our resource auction mechanism that at least γ profit
rate should be guaranteed. Additionally, the cloud service
provider’s revenue under our PIRA algorithm fulfills the mini-
mum profit-rate requirement exactly over the baseline. As long
as the minimum profit rate γ is fulfilled, the cloud service
provider would like to surrender part of the revenue relative
to that in the Revenue-Max algorithm by publishing a com-
petitively low price, with the aim of stimulating cloud users
as many as possible.

Fig. 8(b) shows the number of service bids accepted by the
cloud service provider under different algorithms. Differing
from our PIRA algorithm balancing the interests between
users and the cloud service provider, the state-of-the-art
Revenue-Max algorithm unilaterally targets to gain the max-
imum revenue for the cloud service provider regardless of
the user interests. It can be obtained from Fig. 8(b) that our
proposed PIRA algorithm accepts more service bids than the
Revenue-Max algorithm, therefore capturing a higher fraction
of cloud users in the marketplace. The comparative result coin-
cides with our envision for the PIRA algorithm incentivizing
the maximum users willing to be served at cloud.

Furthermore, we also make detailed comparative analysis
between the approaches of PIRA and Revenue-Max. Since the
Revenue-Max algorithm neglects the user interests but merely
focusesongaining themaximumrevenue, thus thecorresponding
spot unit resource price p(t) is usually set higher than the PIRA

algorithm across time slots, as shown in Fig. 8(c). However,
thanks to a lower, more competitive spot unit resource price p(t)
published by the PIRA algorithm, our price-incentive resource
auction mechanism can attract more cloud users. Accordingly,
our PIRA algorithm requires more active physical machines
serving for cloud users, as shown in Fig. 8(d). With our PIRA
algorithm, the cloud service provider can incentivize more cloud
users, notwithstanding an acceptable sacrifice of revenue in
comparison with the Revenue-Max approach.

VI. CONCLUSION

In this article, we study the market-based cloud pricing
strategy and put forward a price-incentive resource auction
mechanism. The proposed mechanism balances the interests
between users and the cloud service provider, specifically stim-
ulating the maximum cloud users while a minimum profit
rate is ensured for the cloud service provider. Facing the
challenges of (1) the NP-hardness of finding the optimal
solution, (2) the segmentation and concavity of the net-
utility function, and (3) the correlation between decisions
on resource pricing and allocation, we adopt the decompo-
sition approach and the approximate optimization technique,
and design a computational-efficient resource auction algo-
rithm called PIRA which dynamically determines the resource
price and allocation over time slots. Our proposed mechanism
is theoretically proved to be budget balanced, truthfulness,
and envy-free. The efficacy of our proposed resource auction
mechanism is validated by simulation experiments based on
the real-world dataset. Our research work is expected to have
potential contribution towards the resource auction mechanism
design in the cloud marketplace.

Moreover, there are also several avenues for our future
work. Firstly, a more fine-grained cloud resource allocation
scheme should be customized for different kinds of jobs.
It further involves a more exquisite management on varied
cloud resources (e.g., CPU units, memory size, disk storage,
and network bandwidth). In computation-intensive jobs, the
bottleneck resource is generally the CPU unit. But in network-
intensive jobs, the bottleneck resource turns to be the network

Authorized licensed use limited to: University of Exeter. Downloaded on October 25,2023 at 11:51:22 UTC from IEEE Xplore. Restrictions apply.

2044 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 2, JUNE 2021

Fig. 8. Comparative Simulation Results based on Real Trace Data.

bandwidth. Thus, for different kinds of jobs, a tailored resource
allocation strategy should be deployed. Secondly, it is of great
value to verify the cloud resource auction mechanism in a real-
world environment. The evaluation results obtained from an
in-the-wild experiment have more credibility, although there is
much difficulty to construct a realistic experiment environment
where numerous real bidders participate in the cloud resource
auction. The realistic experiment may provide more insights
on the resource auction mechanism design in the real-world
cloud environment.

REFERENCES

[1] Amazon Elastic Compute Cloud (Amazon EC2). Accessed: Apr. 29,
2020. [Online]. Available: https://aws.amazon.com/ec2/

[2] Google Cloud Computing Services. Accessed: Apr. 29, 2020. [Online].
Available: https://cloud.google.com

[3] Microsoft Azure Cloud Computing Services. Accessed: Apr. 29, 2020.
[Online]. Available: https://azure.microsoft.com/en-us

[4] C. Wu, R. Buyya, and K. Ramamohanarao, “Cloud pricing models:
Taxonomy, survey, and interdisciplinary challenges,” ACM Comput.
Surveys, vol. 52, no. 6, pp. 1–36, 2019.

[5] X. Zhang, Z. Huang, C. Wu, Z. Li, and F. C. M. Lau, “Online auc-
tions in IaaS clouds: Welfare and profit maximization with server costs,”
IEEE/ACM Trans. Netw., vol. 25, no. 2, pp. 1034–1047, Apr. 2017.

[6] S. Hou, W. Ni, S. Zhao, B. Cheng, S. Chen, and J. Chen, “Decentralized
real-time optimization of voltage reconfigurable cloud computing data
center,” IEEE Trans. Green Commun. Netw., vol. 4, no. 2, pp. 577–592,
Jun. 2020.

[7] I. A. Kash and P. B. Key, “Pricing the cloud,” IEEE Internet Comput.,
vol. 20, no. 1, pp. 36–43, Jan./Feb. 2016.

[8] B. Zheng, L. Pan, S. Liu, and L. Wang, “An online mechanism for
purchasing IaaS instances and scheduling pleasingly parallel jobs in
cloud computing environments,” in Proc. IEEE 39th Int. Conf. Distrib.
Comput. Syst. (ICDCS), 2019, pp. 35–45.

[9] W. Borjigin, K. Ota, and M. Dong, “In broker we trust: A double-auction
approach for resource allocation in NFV markets,” IEEE Trans. Netw.
Service Manag., vol. 15, no. 4, pp. 1322–1333, Dec. 2018.

[10] V. Guruswami, J. D. Hartline, A. R. Karlin, D. Kempe, C. Kenyon, and
F. McSherry, “On profit-maximizing envy-free pricing,” in Proc. Annu.
ACM-SIAM Symp. Discr. Algorithms (SODA), 2005, pp. 1164–1173.

[11] D. K. Foley, “Resource allocation and the public sector,” Yale Econ.
Essays, vol. 7, no. 1, pp. 45–98, 1967.

[12] S. Venkataraman, Z. Yang, M. Franklin, B. Recht, and I. Stoica, “Ernest:
Efficient performance prediction for large-scale advanced analytics,” in
Proc. 13th USENIX Symp. Netw. Syst. Design Implement. (NSDI), 2016,
pp. 363–378.

[13] Amazon EC2 Spot Instances. Accessed: Apr. 29, 2020. [Online].
Available: https://aws.amazon.com/ec2/

[14] S. Yang, L. Pan, and S. Liu, “An online algorithm for selling your
reserved IaaS instances in Amazon EC2 marketplace,” in Proc. IEEE
Int. Conf. Web Services (ICWS), 2019, pp. 296–303.

[15] M. Khodak, L. Zheng, A. S. Lan, C. Joe-Wong, and M. Chiang,
“Learning cloud dynamics to optimize spot instance bidding strate-
gies,” in Proc. IEEE Conf. Comput. Commun. (INFOCOM), 2018,
pp. 2762–2770.

[16] N. Kamiyama, “Virtual machine trading in public clouds,” IEEE Trans.
Netw. Service Manag., vol. 17, no. 1, pp. 403–415, Mar. 2020.

[17] J. Wan, R. Zhang, X. Gui, and B. Xu, “Reactive pricing: An adaptive
pricing policy for cloud providers to maximize profit,” IEEE Trans. Netw.
Service Manag., vol. 13, no. 4, pp. 941–953, Dec. 2016.

[18] P. Cong et al., “Developing user perceived value based pricing models
for cloud markets,” IEEE Trans. Parallel Distrib. Syst., vol. 29, no. 12,
pp. 2742–2756, Dec. 2018.

[19] Z. Zheng, R. Srikant, and G. Chen, “Pricing for revenue maximization
in inter-datacenter networks,” in Proc. IEEE Conf. Comput. Commun.
(INFOCOM), 2018, pp. 28–36.

[20] C. Wang, B. Urgaonkar, G. Kesidis, A. Gupta, L. Y. Chen, and R. Birke,
“Effective capacity modulation as an explicit control knob for public
cloud profitability,” ACM Trans. Auton. Adapt. Syst., vol. 13, no. 1,
pp. 1–25, 2018.

[21] A. Motamedi, H. Zareipour, and W. D. Rosehart, “Electricity price and
demand forecasting in smart grids,” IEEE Trans. Smart Grid, vol. 3,
no. 2, pp. 664–674, Jun. 2012.

[22] C. Woo et al., “Electricity price behavior and carbon trading: New evi-
dence from California,” Appl. Energy, vol. 204, pp. 531–543, Oct. 2017.

[23] M. Aldossary, K. Djemame, I. Alzamil, A. Kostopoulos, A. Dimakis,
and E. Agiatzidou, “Energy-aware cost prediction and pricing of virtual
machines in cloud computing environments,” Future Gener. Comput.
Syst., vol. 93, pp. 442–459, Apr. 2019.

[24] N. Nasiriani, C. Wang, G. Kesidis, B. Urgaonkar, L. Y. Chen, and
R. Birke, “On fair attribution of costs under peak-based pricing to cloud
tenants,” ACM Trans. Model. Perform. Eval. Comput. Syst., vol. 2, no. 1,
pp. 1–28, 2016.

[25] A. Sarker, Z. Li, W. Kolodzey, and H. Shen, “Opportunistic energy
sharing between power grid and electric vehicles: A game theory-based
pricing policy,” in Proc. IEEE 37th Int. Conf. Distrib. Comput. Syst.
(ICDCS), 2017, pp. 1197–1207.

[26] C. Qiu, H. Shen, and L. Chen, “Towards green cloud computing:
Demand allocation and pricing policies for cloud service brokerage,”
IEEE Trans. Big Data, vol. 5, no. 2, pp. 238–251, Jun. 2019.

[27] J. Huang, J. Zou, and C.-C. Xing, “Competitions among service
providers in cloud computing: A new economic model,” IEEE Trans.
Netw. Service Manag., vol. 15, no. 2, pp. 866–877, Jun. 2018.

[28] R. Landa, M. Charalambides, R. G. Clegg, D. Griffin, and M. Rio, “Self-
tuning service provisioning for decentralized cloud applications,” IEEE
Trans. Netw. Service Manag., vol. 13, no. 2, pp. 197–211, Jun. 2016.

Authorized licensed use limited to: University of Exeter. Downloaded on October 25,2023 at 11:51:22 UTC from IEEE Xplore. Restrictions apply.

LI et al.: PRICE-INCENTIVE RESOURCE AUCTION MECHANISM BALANCING THE INTERESTS BETWEEN USERS AND CLOUD SERVICE PROVIDER 2045

[29] C. Jiang, Y. Chen, Q. Wang, and K. J. R. Liu, “Data-driven auction
mechanism design in IaaS cloud computing,” IEEE Trans. Services
Comput., vol. 11, no. 5, pp. 743–756, Sep./Oct. 2018.

[30] H. Sun, H. Yu, and G. Fan, “Contract-based resource sharing for time
effective task scheduling in fog-cloud environment,” IEEE Trans. Netw.
Service Manag., vol. 17, no. 2, pp. 1040–1053, Jun. 2020.

[31] L. Lu, J. Yu, Y. Zhu, and M. Li, “A double auction mechanism to bridge
users’ task requirements and providers’ resources in two-sided cloud
markets,” IEEE Trans. Parallel Distrib. Syst., vol. 29, no. 4, pp. 720–733,
Apr. 2018.

[32] Y. Zhang, A. Ghosh, V. Aggarwal, and T. Lan, “Tiered cloud storage via
two-stage, latency-aware bidding,” IEEE Trans. Netw. Service Manag.,
vol. 16, no. 1, pp. 176–191, Mar. 2019.

[33] S. Hosseinalipour and H. Dai, “A two-stage auction mechanism for cloud
resource allocation,” IEEE Trans. Cloud Comput., early access, Feb. 26,
2019, doi: 10.1109/TCC.2019.2901785.

[34] V. Arabnejad, K. Bubendorfer, and B. Ng, “Budget and deadline aware
e-Science workflow scheduling in clouds,” IEEE Trans. Parallel Distrib.
Syst., vol. 30, no. 1, pp. 29–44, Jan. 2019.

[35] Z. Feng, O. Schrijvers, and E. Sodomka, “Online learning for measuring
incentive compatibility in ad auctions?” in Proc. World Wide Web Conf.
(WWW), 2019, pp. 2729–2735.

[36] D. Zhang et al., “Near-optimal and truthful online auction for computa-
tion offloading in green edge-computing systems,” IEEE Trans. Mobile
Comput., vol. 19, no. 4, pp. 880–893, Apr. 2020.

[37] Y. Zhu, S. D. Fu, J. Liu, and Y. Cui, “Truthful online auction toward
maximized instance utilization in the cloud,” IEEE/ACM Trans. Netw.,
vol. 26, no. 5, pp. 2132–2145, Oct. 2018.

[38] G. Baranwal and D. P. Vidyarthi, “A truthful and fair multi-attribute
combinatorial reverse auction for resource procurement in cloud com-
puting,” IEEE Trans. Services Comput., vol. 12, no. 6, pp. 851–864,
Nov./Dec. 2019.

[39] B. Yang, Z. Li, S. Jiang, and K. Li, “Envy-free auction mechanism
for VM pricing and allocation in clouds,” Future Gener. Comput. Syst.,
vol. 86, pp. 680–693, Sep. 2018.

[40] A. Prabhakaran and L. J., “Cost-benefit analysis of public clouds for
offloading in-house HPC jobs,” in Proc. IEEE 11th Int. Conf. Cloud
Comput. (CLOUD), 2018, pp. 57–64.

[41] C. Chen, W. Wang, and B. Li, “Performance-aware fair scheduling:
Exploiting demand elasticity of data analytics jobs,” in Proc. IEEE Conf.
Comput. Commun. (INFOCOM), 2018, pp. 504–512.

[42] IONOS Enterprise Cloud. Accessed: Aug. 23, 2020. [Online]. Available:
https://www.ionos.com/enterprise-cloud

[43] CloudSigma. Accessed: Aug. 23, 2020. [Online]. Available: https://www.
cloudsigma.com

[44] C. Chen, W. Wang, and B. Li, “Speculative slot reservation:
Enforcing service isolation for dependent data-parallel computations,”
in Proc. IEEE 37th Int. Conf. Distrib. Comput. Syst. (ICDCS), 2017,
pp. 549–559.

[45] H. Liang, L. X. Cai, D. Huang, X. Shen, and D. Peng, “An SMDP-
based service model for interdomain resource allocation in mobile cloud
networks,” IEEE Trans. Veh. Technol., vol. 61, no. 5, pp. 2222–2232,
Jun. 2012.

[46] B. Yang, Z. Li, S. Chen, T. Wang, and K. Li, “Stackelberg game
approach for energy-aware resource allocation in data centers,” IEEE
Trans. Parallel Distrib. Syst., vol. 27, no. 12, pp. 3646–3658, Dec. 2016.

[47] L. A. Barroso, U. Hlzle, and P. Ranganathan, The Datacenter as a
Computer: An Introduction to the Design of Warehouse-Scale Machines,
3rd ed. London, U.K.: Morgan & Claypool, 2018.

[48] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

[49] J. F. Bonnans, J. C. Gilbert, C. Lemarechal, and C. A. Sagastizabal,
Numerical Optimization: Theoretical and Practical Aspects
(Universitext). New York, NY, USA: Springer-Verlag, 2006.

[50] I. Stoica et al. (2017). A Berkeley View of Systems Challenges for AI.
[Online]. Available: https://arxiv.org/abs/1712.05855

[51] D. E. Womble, M. Shankar, W. Joubert, J. T. Johnston, J. C. Wells,
and J. A. Nichols, “Early experiences on summit: Data analytics and AI
applications,” IBM J. Res. Develop., vol. 63, no. 6, pp. 1–9, 2019.

[52] Spark MLlib. Accessed: Aug. 23, 2020. [Online]. Available: https://
spark.apache.org/mllib/

[53] E. Cortez, A. Bonde, A. Muzio, M. Russinovich, M. Fontoura, and
R. Bianchini, “Resource central: Understanding and predicting work-
loads for improved resource management in large cloud platforms,”
in Proc. 26th ACM Symp. Oper. Syst. Principles (SOSP), 2017,
pp. 153–167.

[54] Pricing Calculator—Configure and Estimate the Costs for
Azure Products. Accessed: Apr. 29, 2020. [Online]. Available:
https://azure.microsoft.com/en-us/pricing/calculator/

[55] Electricity Pricing in Ontario. Accessed: Apr. 29, 2020. [Online].
Available: http://www.ieso.ca/power-data

[56] C. Wang et al., “Recouping energy costs from cloud tenants: Tenant
demand response aware pricing design,” in Proc. ACM 6th Int. Conf.
Future Energy Syst. (e-Energy), 2015, pp. 141–150.

[57] F. Liu, Z. Zhou, H. Jin, B. Li, B. Li, and H. Jiang, “On arbitrating
the power-performance tradeoff in SaaS clouds,” IEEE Trans. Parallel
Distrib. Syst., vol. 25, no. 10, pp. 2648–2658, Oct. 2014.

[58] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” Science, vol. 220, no. 4598, pp. 671–680, 1983.

Songyuan Li received the B.Eng. degree in com-
puter science and technology from the Beijing
University of Posts and Telecommunications in
2018. He is currently pursuing the master’s degree
with the State Key Laboratory of Networking
and Switching Technology, Beijing University of
Posts and Telecommunication, China. He was
a recipient of China National Scholarship in
2019. He has published articles in international
journals and conference proceedings, including
the IEEE TRANSACTIONS ON NETWORK AND

SERVICE MANAGEMENT, the Peer-to-Peer Networking and Applications, the
International Journal of Web and Grid Services, IEEE ICWS, IEEE SCC,
and IEEE ISPA. His current research interests include cloud computing, edge
computing, services computing, performance evaluation, and optimization.

Jiwei Huang (Member, IEEE) received the B.Eng.
and Ph.D. degrees in computer science and technol-
ogy from Tsinghua University, in 2009 and 2014,
respectively. He was a Visiting Scholar with the
Georgia Institute of Technology. He is currently a
Professor and the Dean with the Department of
Computer Science and Technology, China University
of Petroleum, Beijing, China, and the Director with
the Beijing Key Laboratory of Petroleum Data
Mining. He has published one book and more
than 50 articles in international journals and con-

ference proceedings, including the IEEE TRANSACTIONS ON SERVICES

COMPUTING, the IEEE TRANSACTIONS ON CLOUD COMPUTING, ACM
SIGMETRICS, IEEE ICWS, and IEEE SCC. His research interests include
services computing, cloud computing, and performance evaluation. He is a
Member of the ACM.

Bo Cheng (Member, IEEE) received the Ph.D.
degree in computer science and engineering from
the University of Electronic Science and Technology
of China in 2006. He is currently a Professor
with the State Key Laboratory of Networking
and Switching Technology, Beijing University of
Posts and Telecommunications, China. His current
research interests include network services and intel-
ligence, Internet of Things technology, communica-
tion software, and distributed computing. He serves
on the editorial board of the IEEE TRANSACTIONS

ON NETWORK AND SERVICE MANAGEMENT. He is a Member of the ACM.

Authorized licensed use limited to: University of Exeter. Downloaded on October 25,2023 at 11:51:22 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TCC.2019.2901785

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

