
3460 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 3, SEPTEMBER 2021

Resource Pricing and Demand Allocation for
Revenue Maximization in IaaS Clouds:

A Market-Oriented Approach
Songyuan Li , Student Member, IEEE, Jiwei Huang , Member, IEEE, and Bo Cheng , Member, IEEE

Abstract—With more users outsourcing their applications to
the cloud, resource pricing becomes an important issue for IaaS
cloud management. Jointly considering her own bidding bud-
get and the price of cloud resources, each user is self-motivated
to purchase cloud resources according to her resource demand
which maximizes her own utility. Meanwhile, the cloud service
provider (CSP) regulates the price of cloud resources with a cer-
tain profitability objective achieved. With an elaborate resource
pricing strategy, the goals from users and the CSP are bal-
anced and respectively satisfied to some extent. This article
provides an insight into the market-oriented cloud pricing strat-
egy. In specific, we propose an auction market in the IaaS cloud,
where multiple users with heterogeneous bidding budgets and
QoS requirements subscribe cloud resources according to their
resource demands. The resource pricing and demand allocation
scheme targeting revenue maximization also satisfies essential
properties including budget feasibility, incentive compatibility
and envy-freeness. To attack the NP-hardness and non-convexity
of revenue maximization problem, we design a price-incentive
resource auction mechanism namely RARM, which preserves an
(1+α) approximation ratio on revenue maximization. Finally, we
evaluate our RARM mechanism based on the real-world dataset
to certify the efficacy of our proposed approach.

Index Terms—IaaS cloud, market-oriented pricing strategy,
resource auction, revenue maximization.

I. INTRODUCTION

REGARDING the user-friendly advantages of offering
high-performance but cost-saving service, cloud comput-

ing gains more momentum, and attracts more users to execute
their applications at cloud [1], [2]. With the increasing scale
of cloud users, resource management has become a hot topic
in the IaaS cloud community. In order to constantly provide

Manuscript received February 7, 2021; revised May 7, 2021; accepted
May 28, 2021. Date of publication June 2, 2021; date of current
version September 9, 2021. This work was supported by National
Natural Science Foundation of China (No. 61972414), Beijing Nova
Program (No. Z201100006820082), Beijing Natural Science Foundation
(No. 4202066), National Key Research and Development Program of
China (No. 2018YFB1003800), and Fundamental Research Funds for
Central Universities (No. 2462018YJRC040). The associate editor coordi-
nating the review of this article and approving it for publication was
Y. Wu. (Corresponding author: Jiwei Huang.)

Songyuan Li and Bo Cheng are with the State Key Laboratory of
Networking and Switching Technology, Beijing University of Posts and
Telecommunications, Beijing 100876, China (e-mail: lisy@bupt.edu.cn;
chengbo@bupt.edu.cn).

Jiwei Huang is with the Beijing Key Laboratory of Petroleum Data Mining,
China University of Petroleum - Beijing, Beijing 102249, China (e-mail:
huangjw@cup.edu.cn).

Digital Object Identifier 10.1109/TNSM.2021.3085519

more users with high Quality of Service (QoS), a cloud service
provider (CSP) will deploy more cloud resources for the user
use. For the CSP itself, excessive resource expansion implies
an increase in cost, further reducing the CSP’s profit earning.
Given this, it necessitates an efficient resource management
methodology considering the finite resource capacity rather
than the pure resource expansion.

Through an efficient resource management strategy, the con-
flicting requirements from both users’ side and the CSP’s side
could be satisfied [3]. Specifically, cloud users prefer to spend
less in purchasing more cloud resources with a higher QoS
gained, whereas the CSP expects to gain more service revenue
from users. To some extent, the above objectives respectively
from users and the CSP collide with each other, because of the
finite cloud resources. On the one side, users submit requests to
the CSP with high QoS demands, resulting in possessing more
cloud resources. The more resources allocated to cloud users
means a higher QoS offering. On the other side, however, it is
impossible for the CSP to supply users with excessive cloud
resources regardless of its own profit requirement.

A market-oriented resource pricing strategy can be an
effective methodology that balances the conflicting demands
between users and the CSP [4]. The CSP holds the power of
resource pricing, which is aimed to achieve its profitability
goal. As the role of price takers, users are self-motivated to
take advantage of their purchasing capacities (i.e., bidding bud-
gets) to conduct resource purchase, and thereby obtain their
most desired QoS levels. The user’s resource demand varies
with the fluctuation of cloud resource price. With a lower price
configured by the CSP, the resource demands of all users will
be boosted. Oppositely, resource demands of users will be
tightened. It follows that an optimal resource price should be
worked out to establish an equilibrium between the users’ and
CSP’s objectives, which is the research emphasis of this article.

The majority of CSPs (e.g., Microsoft Azure [5], Google
Cloud Platform [6], and Amazon EC2 [7]) generally pro-
vide cloud users with various pricing options, where diverse
pre-configured VMs are offered to satisfy heterogeneous user
demands. Nevertheless, the current pricing schemes adopted
in the cloud marketplace are mostly based on the fixed price,
like the subscription-based approach [8] and the pay-as-you-
go model [9]. The cloud user selecting the subscription-based
option leases the IaaS infrastructure for a pre-specified sub-
scription period. Meanwhile, the cloud user choosing the
pay-as-you-go model can discretionarily purchase on-demand

1932-4537 c© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Exeter. Downloaded on October 25,2023 at 11:47:14 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-8688-1026
https://orcid.org/0000-0001-5220-6703
https://orcid.org/0000-0003-2160-2839

LI et al.: RESOURCE PRICING AND DEMAND ALLOCATION FOR REVENUE MAXIMIZATION IN IAAS CLOUDS 3461

instances, with the service payment charged according to
the actual usage time. These two pricing methods are both
based on the fixed pricing, regardless of the market dynam-
ics including time-varied user demands and operational costs.
Generally, such the fixed-pricing model cannot recoup oper-
ational costs in real-time (especially situated in fluctuant
energy markets [10]), not to mention inducing the user
demands for revenue maximization. In contrast, the market-
oriented resource pricing strategy demonstrates great market
elasticity to identify market fluctuations in the cloud mar-
ketplace, which contributes to earning the maximum revenue
for the CSP.

In this article, we study the market-oriented resource pric-
ing strategy, and design a resource auction mechanism for
multiuser IaaS clouds. With service bids dynamically proposed
by users over time, the CSP will accordingly modulate the
cloud resource price to regulate the resource demands of
users. The user is then self-motivated to purchase a certain
amount of cloud resources based on her resource demand [11].
As adopted by some emerging cloud vendors [12], [13], the
requested cloud resources can be bundled for each user, respec-
tively as a custom-built VM. Meanwhile, the CSP can earn
the maximum revenue from users with a minimum profit
rate ensured. The minimum profit-rate guarantee makes for
recouping operational costs and gaining sufficient profits from
users.

Revenue maximization is a classical problem of the resource
auction design in cloud environments. Many existent liter-
atures [14]–[18], are always based on the winner determi-
nation process, where cloud resources are discriminatorily
priced for different users. Such a second-price auction, how-
ever, does not make sense that identical items should be
valued at the same price. To fill this research gap, our
resource auction mechanism employs a single-price auction
in which cloud resources are marketed at the same unit price.
Furthermore, our proposed resource auction mechanism also
meets several essential properties, including budget feasibil-
ity, incentive compatibility, and envy-freeness. These three
auction properties are simultaneously taken into accounts by
very few literatures, but can significantly strengthen the sus-
tainability of our resource auction mechanism. Details are
as below.

• Budget feasibility alleges that a user’s bidding budget
should sufficiently cover her service payment [19], which
is generally regarded as a basic requirement for auction
mechanism design.

• Incentive compatibility (also known as truthfulness) fun-
damentally eliminates the opportunism of misreporting
the bidding budget, no matter what bidding strategies are
employed by other users [20]. This property ensures that
the user has the incentive to place her true bidding budget.

• Envy-freeness indicates a fairness criterion in the eco-
nomic domain. Under a cloud price setting, each user can
be allocated the amount of resources that maximizes her
utility [21]. In this way, each user can always prefer her
own allocated amount of cloud resources to other pos-
sible allocation results (including other users’ resource
allocation scheme).

To summarize, our main contributions are listed as follows.
1) We model an auction market for IaaS clouds that adopts

the market-oriented resource pricing strategy, based on
which the revenue maximization problem is defined for
the CSP. The NP-hardness and computational intractabil-
ity of the revenue maximization problem are identified.

2) We develop a price-incentive resource auction mecha-
nism namely RARM for multiuser IaaS clouds, where a
computational-efficient resource pricing and demand allo-
cation algorithm called Revenue-Max is proposed. The
Revenue-Max algorithm can gain a near-optimal rev-
enue for the CSP, with an (1+α) approximation ratio
preserved.

3) Extensive simulations based on real-world datasets are
conducted to manifest the efficacy of our proposed
market-oriented approach, with our auction properties
empirically verified.

The remainder of our article is organized as follows.
Section II reviews the background and related work. In
Section III, we introduce and formulate our system model.
Then, in Section IV, we formulate the user’s utility and
rational cloud purchase strategy, and then define the revenue
maximization problem for the CSP. In Section V, we devise a
resource auction mechanism called RARM. The resource pric-
ing and demand allocation algorithm termed Revenue-Max
solves the revenue maximization problem in an effective but
efficient manner. Section VI evaluates the effectiveness and
efficiency of our proposed approach. In Section VII, we
conclude the research work and look into our future directions.

II. BACKGROUND AND RELATED WORK

A. Pricing Methods in Cloud Marketplace

The increasing momentum of cloud computing services
leads to various cloud pricing methods within the cloud mar-
ketplace. A variety of cloud pricing methods range from
the incipient subscription-based approach [8], to the popular
pay-as-you-go model [9], then to the recent market-oriented
pricing strategy [22].

The nascent cloud pricing method can be approximately
dated back to the subscription-based SaaS pricing model
provided by Salesforce.com [8]. The subscription-based pric-
ing approach is technically consolidated by software multi-
tenancy. Each cloud tenant jointly shares the public opera-
tional cost, but still has private space to host its own cloud
applications. Thus, the subscription-based method presents a
comparatively low price for infrastructure rental. A cloud user
can freely subscribe the cloud instance with a fixed price dif-
ferentiated in various CPU types or memory/disk sizes, for a
certain period of time (e.g., in months/years). The fixed price
is generally regulated by the CSP based on a rough estima-
tion of operational costs and prospective profit earnings, thus
unable to reflect the market dynamics [23] and then release
an optimal price setting for revenue maximization.

To further stimulate the potential users conducting cloud
computing migration, a more attractive cloud pricing method
emerges as a pay-as-you-go pricing model [9]. The cloud user
selecting the pay-as-you-go model can purchase on-demand

Authorized licensed use limited to: University of Exeter. Downloaded on October 25,2023 at 11:47:14 UTC from IEEE Xplore. Restrictions apply.

3462 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 3, SEPTEMBER 2021

instances, and is only charged for the actual usage time of
cloud instances (e.g., in minutes/hours). The pay-as-you-go
pricing method brings economic benefits to the cloud user,
preventing from the over-subscribed instances. Thanks to its
appeal to cloud users, the majority of CSPs, including Microsoft
Azure [5], Google Cloud Platform [6], and Amazon EC2 [7],
have presented the option of pay-as-you-go pricing model to
cloud users. However, on-demand instances are generally set
at a fixed price, thereby incapable of reflecting the time-varied
user demands [24] and the dynamic operational costs [25]
as well. Likewise to the subscription-based pricing approach,
the CSP who adopts the pay-as-you-go pricing model is less
proficient in accurately recouping the dynamic operational costs
and earning the maximum revenue from cloud users.

In the face of the above-mentioned limitations, a more flex-
ible cloud pricing method then comes up as a market-oriented
pricing strategy [22]. It can sufficiently reflect the economic
behavior in the cloud marketplace, through regulating the
cloud price dynamically with the fluctuation of resource supply
and demand. One of the notorious is the Amazon EC2 Spot
instance, which takes up the dynamic/auction-based pricing
mechanism [26]. The Amazon EC2 Spot instance targets to
make full use of the idle EC2 instances. In comparison with
on-demand instances, the price of Spot instances is normally
with a sizable price discount (up to 90%). Technically, the
price of Spot instances is dynamically modulated based on
the long-term trend in supply and demand for Spot instance
capacity. By means of this flexible cloud pricing strategy, both
sides of the CSP and cloud users are incentivized in terms of
economic benefits. Cloud users receive a better economic stim-
ulus, and then voluntarily adjust their purchasing behavior in
response to the volatile cloud marketplace; also, the CSP can
earn much more service revenue under the market-oriented
cloud pricing strategy [27].

B. Market-Oriented Cloud Pricing Strategy

As stated in Section II-A, the market-oriented cloud pric-
ing strategy demonstrates great advantages over the two
other fixed-pricing methods (i.e., subscription-based, pay-as-
you-go). Given this, it has drawn significant attention from
academia and industry, to dynamically determine the pricing
and allocation of cloud resources.

Regarding many indirect/hidden factors inhabited in the
cloud marketplace, a black-box data-driven method termed
online learning [28] can shed light on the market char-
acteristics. The revealed market characteristics are utilized
to design or study the market-oriented pricing strategy.
Zhang et al. [29] exploited the historical market information to
predict future sales with the multi-armed-bandit-based online
learning approach, based on which the online resource pricing
decision was made. Prasad et al. [30] proposed an online-
learning-based Fisher market that enabled online resource
pricing and allocation, where both marketing randomness and
resource integrality gap were fully considered. On the side of
cloud users with limited budgets, Wu et al. [31] took advantage
of the online learning technique to infer her optimal pur-
chasing bundle of on-demand and Spot instances. The online
learning approach assuredly brings some insights into the

market-oriented cloud pricing strategy, but it still meets with
crucial challenges. The success of the online learning approach
originates from comprehensive marketing data, but an exten-
sive data collection in the cloud marketplace is impracticable
in general cases. Since the marketing data of each sector
may belong to different market entities, the exploitation of
cross-section marketing data matters for data security and pri-
vacy [32]. Yet, the online learning approach is commonly
implemented in a centralized manner, with centralized data
collection generally required.

In contrast, some domain-knowledge-based white-box
methods can be intrinsically decentralized, including the game-
theoretic approach and the auction-based approach. These
approaches are driven by domain knowledge, thereby gain-
ing better explainability than the online learning method.
Regarding the game-theoretic approach, Cardellini et al. [33]
formulated the IaaS provider’s hybrid instance selling pro-
cess as a Stackelberg game, with the objective of earning
as much service revenue as possible. Ghosh and Sarkar [34]
investigated the interactions between IoT/wireless/cloud ser-
vice providers in IoT scenario as a combination of sequential
and parallel non-cooperative games, where an equilibrium
pricing strategy was acquired through the game process.
Siew et al. [35] introduced the game theory to study the
sharing economy in the mobile cloud environment, based on
which dynamic pricing mechanisms were designed for wel-
fare/profit maximization. As for the auction-based approach,
Jin et al. [14] put forward an incentive-compatible double auc-
tion mechanism for mobile cloud computing, where mobile
devices’ and cloudlets’ contributions were dynamically priced.
Li et al. [11] developed a price-incentive resource auction
mechanism in cloud environments, whose objective was to
stimulate the maximum cloud users served at the cloud.
Hosseinalipour and Dai [15] demonstrated the market-oriented
interactions between different cloud entities as a two-phase
auction model, where the two stages of auctions were respec-
tively formulated as an option-based sequential auction and
an auction/flat-mixed market. Lu et al. [16] concerned about
a two-sided cloud market environment with multiple CSPs, on
the basis of which a double auction mechanism was presented
to match the users’ and CSPs’ requirements.

C. Network Economics

Network economics is a multidisciplinary research subject,
which broadly covers various knowledge about economics,
network science, mechanism design, etc, and primarily inves-
tigates the multiuser resource allocation from the economic
perspective [36]. In the past few years, several research top-
ics about network economics have been extensively studied
within the computer and information systems, including the
resource pricing and demand allocation [37], as well as the
auction-based resource market design [38].

The problem of resource pricing and demand allocation
is a principal research issue in network economics, which
solves out how shared resources are divided based on each
one’s resource demand. Huang et al. [39] proposed a revenue-
optimal resource allocation scheme in mobile edge com-
puting environment, where the totally unimodular property

Authorized licensed use limited to: University of Exeter. Downloaded on October 25,2023 at 11:47:14 UTC from IEEE Xplore. Restrictions apply.

LI et al.: RESOURCE PRICING AND DEMAND ALLOCATION FOR REVENUE MAXIMIZATION IN IAAS CLOUDS 3463

was utilized to present a linear-programming-based solution.
Qiu and Shen [40] exploited the probabilistic optimization
technique to tackle the dynamic demand prediction and
allocation problem in cloud service brokerage, where the
uncertainty of cloud tenants’ behavior and the probability
distribution of prediction errors were both taken into consider-
ation. Zhang et al. [41] designed an unmanned-aerial-vehicle
(UAV) scheduling approach based on dynamic Bayesian game
process, where multiple user requests were dispatched to geo-
distributed UAVs with the optimal economic benefits (i.e.,
profits) gained by UAV operators. Wan et al. [42] put for-
ward a reactive cloud pricing algorithm to the varied user
demand and system status changes, which adaptively adjusted
the server price with the objective of maximizing the cloud
operator’s profit earnings.

Auction is a compelling mechanism being widely adopted in
the area of network economics, which can regulate the market
behaviors of resource sale and purchase. Shi et al. [17] for-
mulated the competitive relationship between multiple CSPs
as a partially observable Markov game, and then applied a
multi-agent deep reinforcement learning approach to generate
the pricing strategy in the auction-based cloud marketplace.
Le et al. [18] proposed a randomized auction mechanism for
dynamic bandwidth allocation in multi-tenant edge comput-
ing environment, with the property of incentive compatibility
approximately satisfied. Wang et al. [43] presented a secure
energy auction approach for Industrial Internet of Things
(IIoT), where the underlying blockchain technique could
provide an immutable, trustless and distrbuted solution on
transaction recording. Yin et al. [44] put forward an efficient
collaboration for Internet of Vehicles (IoV), where an auc-
tion mechanism was presented to incentivise more vehicles
contributing their resources cooperatively. Zhang et al. [45]
designed a smart-contract-enabled hierarchical auction mech-
anism for decentralized crowdsourcing, in which the market
stability and financial trustworthiness were guaranteed.

With the knowledge of network economics utilized, this
article intends to make contributions towards the market-
oriented cloud pricing strategy, with several unique features.
Firstly, we conduct an elaborate formulation of user utility.
With a voluntary basis, the cloud user purchases a specified
amount of cloud resources according to her resource demand,
where her own maximum utility is obtained. Unlike conceiv-
ing demand allocation as an assignment problem [33], [34],
[39] regardless of user utility, our scenario setting stands a
lot closer to the realistic cloud marketplace. Secondly, we
carry out a single-price auction where cloud resources are
marketed with the same unit price, which differs from the
existent literatures [14]–[18] adopting a second-price auction.
Our mechanism design fits more with our intuitive knowl-
edge that identical items should be valued at the same price.
The second-price auction, nonetheless, proposes discrimina-
tory prices for different users; in other words, identical items
may be sold to different bidders at various prices. It breaks the
fairness principle in cloud pricing, where a uniform price set-
ting should be followed. Thirdly, we conduct a careful design
on auction mechanism to enable some essential properties (i.e.,
budget feasibility, incentive compatibility, and envy-freeness)

Fig. 1. Auction Market in the Multiuser IaaS Cloud.

satisfied. Although taken into account by very few literatures,
these three auction properties actually play an important part
in the sustainability of our resource auction mechanism.

III. SYSTEM MODEL

System Overview: Fig. 1 demonstrates our auction mar-
ket in the multiuser IaaS cloud, which works in a time-slotted
manner. The time horizon is discretized into a sequence of
time slots at the duration of τ , indexed by t. At each time
slot t, multiple users arbitrarily determine to place the service
bid, and compete with each other to obtain cloud resources
within the IaaS cloud infrastructure. The CSP collects the
latest service bids proposed by various users at the begin-
ning of each time slot t, and hereby makes decisions on the
spot cloud resource price p(t) as well as resource allocation
scheme A(t) = 〈ai (t)〉ui∈U(t). The user ui whose service bid
is accepted is allocated ai (t) units of cloud resources equaling
to her resource demand. The ai (t) units of allocated resources
can be bundled as a custom-built VM [46], where the user ui
is served during the time slot t. With ai (t) units of allocated
cloud resources, the user ui is charged a service payment of
p(t) · ai (t).

Cloud Users: There are totally N users placing service bids
over time slots, and we suppose that N(t) ≤ N users (denoted
by U(t)) place service bids at the time slot t. The set of N users
is denoted by U = {u1, . . . , uN }, thus U(t) ⊂ U . Without
loss of generality, we assume that each user ui places a single
service bid during one time slot. The user who concurrently
places multiple service bids can be conceived as a group of
users.

At each time slot t, each user ui ∈ U(t) negotiates with the
CSP by placing her service bid βi (t) = (si , bi , χi , t

−
i , t+i), in

which the service type si , the bidding budget bi , the size of
executed job χi , and the elastic QoS requirement [t−i , t+i] are
proposed. The service type si suggests the type of application
requested by the user ui for execution at the IaaS cloud. The

Authorized licensed use limited to: University of Exeter. Downloaded on October 25,2023 at 11:47:14 UTC from IEEE Xplore. Restrictions apply.

3464 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 3, SEPTEMBER 2021

TABLE I
NOTATION AND DESCRIPTION

bidding budget bi implies the maximum monetary expense
that the user ui is willing to be charged per time slot for
cloud resource subscription. The size of the executed job for
user ui during the period of cloud subscription is estimated
by χi . Meanwhile, the user ui ’s QoS requirement is elastic as
[t−i , t+i], indicating the desired range of response time.

During the time slot t, each user ui is allocated ai units
of cloud resources which can take various forms (e.g., CPU
units, memory space, and disk storage). Inspired by the degree
of parallelism adopted by the Hadoop/Spark framework [47],
the amount of allocated cloud resources ai (t) can reflect the
number of allotted compute slots while each compute slot is
compiled by a fix number of varied resources.

Cloud Service Provider: We restrict our research spotlight
on a homogeneous set of physical machines administered by
the CSP, as in [48], [49]. There are M physical machines
administered by the CSP, each of which is equipped with
r units of computational resources. To dwindle unnecessary
operational costs and raise the profit earning, the CSP sim-
ply turns on the physical machines running in load, while the
idle physical machines are shut down into the sleep mode.
At each time slot t, the CSP collects the service bids from
different users, and assigns ai (t) units of cloud resources to
each user ui ∈ U(t). Hence, as in [23], the number of phys-
ical machines required to be active during the time slot t is
estimated by (1).

m(t) =

⌈∑
ui∈U(t) ai (t)

r

⌉
(1)

The CSP’s operation costs primarily derive from the energy
costs of IaaS infrastructure [25]. Suppose the average energy
cost to perform a physical machine per time slot is c̃, the total
energy cost used for operating m(t) physical machines during
the time slot t is c̃ ·m(t). The power price pe(t) generally fluc-
tuates over time slots [50]. Thus, the CSP should be charged
for the energy bill of pe(t) · c̃ ·m(t) at the time slot t.

At each time slot t, the CSP also determines the spot unit
resource price as p(t), where each user ui ∈ U(t) is charged
for a service payment of p(t) ·ai (t). Under the cloud resource
price of p(t), the CSP should not only recoup energy costs
from users, but also gain a minimum profit rate of γ. Thus,
the following constraint (2) is implied.

p(t) ·
∑

ui∈U(t)

ai (t) ≥ (1 + γ) · c̃ · pe(t) ·m(t). (2)

IV. PROBLEM STATEMENT

A. User Utility Model

We firstly formulate the user utility model, representing the
cloud user’s preference towards different resource allocation
results. In this article, for a user ui , her user utility jointly
depends on the QoS gain from the resource allocation ai (t)
and the associated momentary payout p(t) · ai (t).

For a user ui , her QoS gain (i.e., response time ti (ai (t)))
reflects her “happiness” towards diverse resource allocation
results ai (t). With more cloud resources ai (t) allocated, the
user ui can gain a better QoS level. As stated in the experi-
mental evidence [51] and the regression analysis results [52],

Authorized licensed use limited to: University of Exeter. Downloaded on October 25,2023 at 11:47:14 UTC from IEEE Xplore. Restrictions apply.

LI et al.: RESOURCE PRICING AND DEMAND ALLOCATION FOR REVENUE MAXIMIZATION IN IAAS CLOUDS 3465

the response time ti (ai (t)) obtained by user ui can be esti-
mated as (3), where θsi ,0, θsi ,1, θsi ,2, and θsi ,3 are regression
parameters specialized to the service type si .

ti (ai (t)) = θsi ,0 + θsi ,1 ·
χi

ai (t)
+ θsi ,2 · ai (t)

+ θ3,si · log(ai (t)) (3)

As mentioned in Section III, the user ui proposes an elas-
tic QoS requirement as the desired range of response time
[t−i , t+i]. According to (3), the desired range of cloud resource
allocation [a−i , a+i] can be correspondingly figured out, as
in (4). It is pointless for the user ui to allocate ai (t) > a+i
units of cloud resources, gaining a response time shorter than
t−i . Additionally, it is unsatisfactory to allocate ai (t) < a−i
cloud resources, incurring a response time longer than t+i .

a−i = t−1
i (t+i), a+i = t−1

i (t−i) (4)

From the above, the “happiness” of the user ui gained from
ai (t) units of cloud resources, denoted by gi (ai (t)), can be
formulated in (5) below. When ai (t) ∈ [a−i , a+i], we adopt
the QoS progress rate ρi (ai (t)) to evaluate the gi (ai (t)). The
QoS progress rate ρi (ai (t)) is defined as the response time
ti (ai (t)) relative to t+i , formulated by (6). It is noted that, the
QoS progress rate ρi (ai (t)) is absolutely not proportionate
to the amount of allocated resources ai (t), but with strong
concavity [51].

gi (ai (t)) =

⎧⎨
⎩

ρi (a
+
i) if ai (t) ∈ (a+i ,+∞)

ρi (ai (t)) if ai (t) ∈ [a−i , a+i]

0 if ai (t) ∈ [0, a−i)

(5)

ρi (ai (t)) =
t+i

ti (ai (t))
(6)

When gaining the QoS progress ρi (ai (t)), the user ui also
has to be charged the service payment of p(t)·ai (t). Different
from the QoS gain, the service payment p(t)·ai (t) contributes
negatively to the user utility. To summarize, the user utility
function vi (p(t), ai (t)bi) can be formulated as (7). The ser-
vice payment p(t) · ai (t) cannot exceed the bidding budget
bi ; thus, the service payment p(t) ·ai (t) is normalized by the
bidding budget bi in (7).

vi (p(t), ai (t), bi)

=

⎧⎪⎪⎨
⎪⎪⎩

ρi (a
+
i)− p(t)·ai (t)

bi
if ai (t) ∈ (a+i ,+∞)

ρi (ai (t))− p(t)·ai (t)
bi

if ai (t) ∈ [a−i , a+i]

−p(t)·ai (t)
bi

if ai (t) ∈ [0, a−i).

(7)

B. Rational Resource Demand

After formulating the user utility model, we then investigate
the cloud resource demand of each user ui ∈ U(t) under
a certain determined spot unit resource price p(t). When the
spot price per unit of cloud resources has quoted p(t), each
user ui ∈ U(t) rationally determines her resource demand
di (p(t)) through solving a utility maximization problem. In
other words,

di (p(t)) � argmax
ai (t)

vi (p(t), ai (t), bi) (8)

Algorithm 1: RARD: Rational Resource Demand
Allocation Algorithm

Input: Spot Unit Resource Price p(t);
Service Bids of Users U(t) in the Time Slot t.

Output: Resource Allocation Scheme A(t).
1 for each ui ∈ U(t) do
2 if p(t) · a−i > bi then
3 ai (t)← 0; � Case 1

4 else
5 Obtain the user ui ’s resource demand allocation

ai (t) = di (p(t)) where her own utility vi (·) is
maximized, by solving the KKT equations of
Problem P1; � Case 2

6 return A(t)← 〈ai (t)〉N (t)
i=1 ;

As indicated in (7), however, the segmentation and non-
convexity of user utility function vi (·) prevent from solving
out the resource demand di (p(t)) efficiently. Given this, the
following two cases are divided into discussion.

– Case 1: The user ui can purchase the maximum amount
of cloud resources less than a−i , even if stretching its bid-
ding budget bi . In this case, the user ui ’s QoS requirement
[t−i , t+i] cannot be satisfied. Instead, it would arouse a nega-
tive utility if the user ui purchases cloud resources. Hence,
the user ui inclines to forgo cloud resource subscription
with di (p(t)) = 0.

– Case 2: The user ui has the enough budget bi to purchase
ai (t) > a−i units of cloud resources. In this case, the user
ui would not like to purchase the amount of cloud resources
greater than a+i , because her QoS requirement will be overful-
filled beyond T−

i if ai (t) > a+i , barely making for disutility
instead. Therefore, the resource demand di (p(t)) maximiz-
ing the user ui ’s utility is supposed to be found out within
[a−i , a+i].

From now on, we start by solving the resource demand
di (p(t)) for the Case 2. Here, we formulate the Problem P1
which can determine the optimal ai (t) maximizing the user
ui ’s utility over [a−i , a+i]. The constraint (C1.1) is the require-
ment of budget-feasible resource allocation scheme [46],
suggesting that the user ui ’s service payment p(t) · ai (t)
cannot exceed her own bidding budget bi .

max
ai (t)

ρi (ai (t))− p(t) · ai (t)
bi

(P1)

s.t. p(t) · ai (t) ≤ bi (C1.1)

a−i ≤ ai (t) ≤ a+i (C1.2)

It is noticeable that, Problem P1 is a convex optimization
problem (The proof is omitted). Thus, we can solve the
Problem P1 by seeking out the solution of the corresponding
Karush-Kuhn-Tucker (KKT) equations [53]. The computa-
tional complexity of solving the KKT equations exponentially
increases with the number of inequality constraints in the
original convex optimization problem [54]. There are K = 3
inequality constraints (i.e., the upper bound of (C1.1), and the
upper and lower bound of (C1.2)) in Problem P1, thus we can

Authorized licensed use limited to: University of Exeter. Downloaded on October 25,2023 at 11:47:14 UTC from IEEE Xplore. Restrictions apply.

3466 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 3, SEPTEMBER 2021

Fig. 2. Overview of our RARM Mechanism.

solve the Problem P1 for the user ui through KKT equations
in the computational complexity of O(2K) = O(1).

Based on the above, we epitomize the Case 1 and Case
2 to put forward the Rational Resource Demand Allocation
Algorithm namely RARD, as shown in Algorithm 1. Each user
ui ∈ U(t) is allocated ai (t) units of cloud resources accord-
ing to their own resource demands di (p(t)). When the spot
unit resource price quotes p(t), each user ui ∈ U(t)’s resource
demand allocation can be sequentially determined, requiring
the overall computational complexity of O(N (t)). Moreover,
the Problem P1 of each user ui is independent with no corre-
lation, thus the resource demand of each user ui ∈ U(t) can
be also solved in parallel, where the computational complexity
is then reduced to O(1).

C. Optimization Problem

The objective of our optimization problem is to maximize
the service revenue from the CSP’s standpoint. Therefore, we
formulate the resource pricing and demand allocation problem
as the Problem P2 below.

max
ai (t),p(t)

π(t) = p(t) ·
∑

ui∈U(t)

ai (t) (P2)

s.t. p(t) ·
∑

ui∈U(t)

ai (t) ≤ M · r (C2.1)

p(t) ·
∑

ui∈U(t)

ai (t) ≥ (1 + γ) · c̃ · pe(t) ·m(t) (C2.2)

ai (t) = di (p(t)) ∀ui ∈ U(t) (C2.3)

The constraint (C2.1) indicates the resource capacity con-
straint of IaaS infrastructure, and the constraint (C2.2) ensures
the minimum profit rate of γ required by the CSP. The
constraint (C2.3) embodies the envy-free resource allocation

scheme [55], meaning that each user ui ∈ U(t) is allo-
cated cloud resources by their own resource demand, which
maximizes their own utilities.

Solving the Problem P2 is non-trivial because of the follow-
ing two aspects. Firstly, our optimization Problem P2 belongs
to the family of bin packing problem that is NP-hard to solve
out [56]. Each physical machine in the IaaS cloud is conceived
as a bin with finite computational resources. Our objective is to
figure out the resource allocation scheme across multiple phys-
ical machines with the service revenue maximized at each time
slot t. Secondly, the user utility function vi (·) (i.e., Eq. (7)) is
in a piecewise and non-convex form. In Problem P2, each user
ui ’s resource allocation ai (t) is determined based on her own
utility maximization, hence making the problem solving more
complicated.

V. MECHANISM DESIGN

A. RARM: Resource Auction Mechanism Framework

To attack the aforementioned computation challenges,
we develop a Resource Auction Mechanism for Revenue
Maximization called RARM. We identify the RARM mechanism
at each time slot t into two steps, as demonstrated in Fig. 2.

• Step I: After receiving the service bids proposed in the
time slot t, the CSP firstly specifies the feasible resource
price spectrum of p(t), denoted as [p(t)−, p(t)+]. Under
the spot unit resource price p(t) ≥ p(t)−, not only the
resource capacity constraint (C2.1) of IaaS infrastructure
is satisfied, but also the minimum-γ-profit-rate require-
ment is most likely to be ensured. The upper bound of
price p(t)+ indicates a threshold of resource price, where
all the users ui ∈ U(t) will abandon cloud resource sub-
scription with di (p(t)) = 0 if p(t) > p(t)+, hence the
CSP cannot gain service revenue from users in this case.

• Step II: Within the resource price spectrum
[p(t)−, p(t)+], the CSP finalizes the revenue-optimal

Authorized licensed use limited to: University of Exeter. Downloaded on October 25,2023 at 11:47:14 UTC from IEEE Xplore. Restrictions apply.

LI et al.: RESOURCE PRICING AND DEMAND ALLOCATION FOR REVENUE MAXIMIZATION IN IAAS CLOUDS 3467

spot unit resource price p(t) together with the associated
resource allocation scheme A(t), where the CSP earns the
maximum service revenue with a minimum profit rate γ
assuredly gained. The CSP manipulates the active/sleep
mode of physical machines based on A(t), and collects
the service payment from the accepted users whose
ai (t) > 0.

B. Step I: Determine the Feasible Resource Price Spectrum

We firstly present the notation of p+i , on which our mecha-
nism design depends. According to the bidding budget bi and
the desired range of cloud resource allocation [a−i , a+i], we
acquire each user ui ’s maximum acceptable price p+i per unit
cloud resource, formulated in (9). If p(t) > p+i , then the user
ui will abandon cloud resource subscription with di (p(t)) =
0, hence the CSP cannot earn any service revenue from the
user ui . Here, we sort up the users ui ∈ U(t) according to p+i
in an non-decreasing rank Θ =< u[1], . . . , u[N (t)] >, where
u[i] indicates the user ranked in the i th place of Θ.

p+i =
bi

a−i
for each ui ∈ U(t) (9)

The feasible spectrum of spot unit resource price p(t) is
defined as [p(t)−, p(t)+]. Specifically, we adopt p+

[N (t)]
as

the upper bound p(t)+ of [p(t)−, p(t)+], as in (10). This is
because, the CSP cannot gain service revenue with π(t) = 0
if p(t) is set higher than p+

[N (t)]
. Additionally, we determine

the lower bound p(t)− of [p(t)−, p(t)+], where both the
resource capacity constraint (C2.1) and the minimum-profit-
rate constraint (C2.2) are taken into accounts.

We specifically determine the lower bound p(t)− of [p(t)−,
p(t)+] as follows. On the one hand, p+

[i]
(1 ≤ i ≤ N (t))

is leveraged as the binary search boundary for the resource-
clearing price pclear . At the resource-clearing price pclear ,
the total resource supply is equated to the overall demand
allocation of users ui ∈ U(t), which is

∑
ui∈U(t) di (p(t)) =

M · r . Thus, setting p(t) ≥ pclear keeps the resource capacity
constraint (C2.1) satisfied. On the other hand, we introduce
the notation �p� = c̃ · pe(t) · (1 + γ)/r , suggesting the unit
resource price which equally split a physical machine’s bottom
price c̃ · pe(t) · (1+ γ). By means of checking if p(t) > �p�,
it can be roughly judged whether the minimum profit rate
of γ is gained at the price of p(t), in correspondence to the
minimum-profit-rate constraint (C2.2). To sum up, the lower
bound p(t)− is determined in (10).

p(t)+ = p+
[N (t)]

, p(t)− = max{pclear , �p�} (10)

The algorithm of determining the lower bound p(t)− called
LBP is shown in Algorithm 2. Note that, the resource-clearing
price pclear can be figured out with the binary search method
(Line 12-17). The range of binary search is specified in Line
1-11, according to the following four cases, as demonstrated
in Fig. 3.

– Case 1: pclear ≤ �p�. We need not seek the resource-
clearing price pclear with the binary search method, but

Algorithm 2: LBP: Determining the Lower Bound of Spot
Unit Resource Price

Input: Service Bids of Users U(t) in the Time Slot t.
Output: Lower Bound p(t)− of Spot Resource Price p(t).
1 Obtain the resource allocation scheme A(t) under p(t) =
�p� using the RARP algorithm;

2 if
∑N (t)

i=1 ai (t) ≤ M · r then
3 return p(t)− ← �p�;
4 else
5 for each i = {1, 2, ...,N (t)} do
6 Obtain the resource allocation scheme A(t) under

p(t) = p+
[i]

using the RARD algorithm;

7 if
∑N (t)

j=1 aj (t) ≤ M · r then
8 pr ← p+

[i]
;

9 if i > 1 and p+
[i−1]

> �p� then pl ← p+
[i−1]

;

10 else pl ← �p�;
11 break;

12 while pr − pl ≥ ξ do
13 pm ← (pr + pl)/2;
14 Obtain the resource allocation scheme A(t) under

p(t) = pm using the RARD algorithm;

15 if
∑N (t)

j=1 aj (t) ≤ M · r then pr ← pm ;

16 else pl ← pm ;

17 return p(t)− ← pr ;

Fig. 3. Binary search range for pclear in four cases.

straightforwardly determine the lower bound p(t)− as �p�
(Line 1-3).

– Case 2: �p� < pclear ≤ p+
[1]

. We traverse p+
[j]

(1 ≤
j ≤ N (t)) to find out the first p+

[j]
> �p� under which the

resource capacity constraint (C2.1) is satisfied, which is p+
[1]

in
this case. Here, the binary search range for pclear is specified
as [�p�, p+

[1]
] (Line 8 and 10). Since pclear > �p�, then the

lower bound p(t)− = pclear according to (10).
– Case 3: p+

[i−1]
≤ �p� < pclear ≤ p+

[i]
, where 2 ≤ i ≤ N(t).

In this case, the first p+
[j]

> �p� (1 ≤ j ≤ N(t)) which satisfies

Authorized licensed use limited to: University of Exeter. Downloaded on October 25,2023 at 11:47:14 UTC from IEEE Xplore. Restrictions apply.

3468 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 3, SEPTEMBER 2021

the resource capacity constraint (C2.1) is p+
[i]

(i > 1). And

because �p� ≥ p+
[i−1]

, the corresponding binary search range

for pclear is determined as [�p�, p+
[i]
] (Line 8 and 10). Further,

in similar to the Case 2, the lower bound p(t)− = pclear .
– Case 4: �p� < p+

[i−1]
< pclear ≤ p+

[i]
, where

2 ≤ i ≤ N(t). In this case, the difference from the Case 3 lies
in �p� < p+

[i−1]
. Therefore, the binary search range for pclear

is supposed to be [p+
[i−1]

, p+
[i]
] (Line 8 and 9). Meanwhile, in

similar to the Case 2, the lower bound p(t)− = pclear .
In the LBP algorithm, p+

[j]
(1 ≤ j ≤ N(t)) is traversed to

specify the binary search range for pclear (Line 5-11). Under
each p+

[j]
where 1 ≤ j ≤ N(t), it takes the computational com-

plexity of O(1) to obtain N(t) users’ resource demands in
parallel with the RARD algorithm. After [pr , pl] is specified
as the binary search range for pclear , the lower bound p(t)−
(i.e., pclear) is acquired in an iterative manner (Line 12-17),

with the O(log(pr−pl

ξ)) computational complexity. Here, ξ
is a threshold coefficient indicating the binary-search termi-
nation condition. Therefore, the computational complexity of
LBP algorithm is O(N (t) + log(p

r−pl

ξ)).

C. Step II: Finalize the Resource Price and Allocation
Scheme

Given the feasible resource price spectrum [p(t)−, p(t)+],
we find out the revenue-optimal spot unit resource price p(t)
as well as the associated resource allocation scheme A(t).
As mentioned in Section IV-C, our revenue maximization
Problem P2 suffers from the NP-hardness and the computa-
tional intractability which results from the segmentation and
non-convexity of user utility function vi (·) (i.e., Eq. (7)).

Inspired by the specific structure of our optimization
problem, we propose a simple but efficient Resource Pricing
and Demand Allocation Algorithm for Revenue Maximization
named Revenue-Max which could gain a near-optimal rev-
enue. To be specific, we discretize the continuous resource
price spectrum of [p(t)−, p(t)+] into D discrete candidate
prices, where D is formulated in (11). Note that, α > 0
is a constant coefficient that controls the trade-off between
computational complexity and approximation ratio (detailed in
Theorem 1). Let p̂d represent the d th candidate price, which
is defined in (12).

D =

⌊
log(p(t)+/p(t)−)

log(1 + α)

⌋
+ 1 (11)

p̂d = p(t)− · (1 + α)d−1 (12)

The pseudo-code of the Revenue-Max algorithm is shown
in Algorithm 3. The Revenue-Max algorithm calculates the
service revenue π(t) under each candidate price p̂d . Then,
we pick out one of candidate prices p̂(t) = p̂d amongst the
D discrete prices, under which the CSP earns the maximum
service revenue with the minimum profit rate of γ definitely
gained. Here, the spot unit resource price p(t) is finalized as
p̂(t), and the corresponding resource allocation scheme Â(t)

Algorithm 3: Revenue-Max: Resource Pricing and
Demand Allocation Algorithm for Revenue Maximization

Input: Feasible Resource Price Spectrum
[
p(t)−, p(t)+

]
.

Output: Spot Unit Resource Price p(t);
Resource Allocation Scheme A(t).

1 Initialize π̂(t)← 0, p(t)← null, A(t)← null;

2 Calculate D ← � log(p(t)+/p(t)−)
log(1+α)

�+ 1;

3 for each d = {1, 2, ...,D} do
4 p̂d ← p(t)− · (1+ α)d−1;
5 Obtain the resource allocation scheme A(t) under

p(t) = p̂d using the RARD algorithm;

6 if p̂d ·
∑N (t)

i=1 ai (t)
(1+γ)

≥ c̃ · pe(t) ·
⌈∑

ui∈U(t) ai (t)

r

⌉
and

p̂d ·
∑N (t)

i=1 ai (t) > π̂(t) then
7 π̂(t)← p̂d ·

∑
ui∈U(t) ai (t);

8 p̂(t)← p̂d , Â(t)← 〈ai (t)〉N (t)
i=1 ;

9 return p(t)← p̂(t) and A(t)← Â(t);

is obtained with the RARD algorithm. Finally, the CSP earns
the service revenue π̂(t) = p̂(t) · Â(t).

Theorem 1: The Revenue-Max algorithm achieves an
approximation ratio of (1 + α) on the CSP’s revenue
maximization, requiring the parallel computational complexity
of O(D).

Proof: For the true revenue-optimal spot unit resource price
p∗(t), there must exist an integer z ∈ [1,D] such that p(t)− ·
(1 + α)z−1 ≤ p∗(t) ≤ p(t)− · (1 + α)z . The CSP earns the
optimal revenue as π∗(t) at the price of p∗(t). Here, we can
obtain that

π∗(t) = p∗(t)×
∑

ui∈U(t)

di (p
∗(t))

≤ (
p(t)− · (1 + α)z

)× ∑
ui∈U(t)

di (p
∗(t))

≤ (1 + α)×
(
p(t)− · (1 + α)z−1

)
(13)

×
∑

ui∈U(t)

di

(
p(t)− · (1 + α)z−1

)

≤ (1 + α)× π̂(t)

where the inequality (14) is derived from the fact that di (p(t))
is non-increasing with the price p(t). Henceforth, the approxi-
mation ratio of the Revenue-Max algorithm is proved to be
(1+α). Since we need to respectively calculate the correspond-
ing service revenue at all D candidate prices. At each candidate
price p̂d , it takes the computational complexity of O(1) to
obtain N(t) users’ resource demands in parallel with the RARD
algorithm. Thus, the parallel computational complexity of the
Revenue-Max algorithm is O(D).

It is suggested in Theorem 1 that, the constant coefficient α
balances the trade-off between computational efficiency and
approximation ratio, as exemplified in Table II. In a gen-
eral way, we devise the computational-efficient approximation
algorithm Revenue-Max to obtain a near-optimal result, by

Authorized licensed use limited to: University of Exeter. Downloaded on October 25,2023 at 11:47:14 UTC from IEEE Xplore. Restrictions apply.

LI et al.: RESOURCE PRICING AND DEMAND ALLOCATION FOR REVENUE MAXIMIZATION IN IAAS CLOUDS 3469

TABLE II
APPROXIMATION RATIO VS. COMPUTATIONAL EFFICIENCY

switching the continuous price decision range into a discrete
decision domain.

Theorem 2: [Incentive Compatibility] A user ui can always
place its true bidding budget bi = ηi with no incentive to
misreport, regardless of what bidding strategies are adopted
by other users.

Before proving Theorem 9, we preliminarily present the
definition of Incentive Compatibility (IC) Regret identified
in [57] to quantify the incentive compatibility of our resource
auction mechanism.

Definition 1 (IC Regret [57]): For a user ui ∈ U , let ηi ∈
B be her truthful bidding budget, whereas η′i ∈ B is the bid-
ding budget that the user ui actually places to the CSP. It
is possible to be η′i
= ηi , where the user ui misreports her
own bidding budget. Given the above notations, the IC Regret
rgti (ηi) is defined for the user ui as follows.

rgti (ηi) = max
η′i∈B

(
vi (bi = η′i)− vi (bi = ηi)

)
(14)

where B is the feasible domain of bidding budget bi , e.g.,
R
+. Note that, vi (bi = ηi) and vi (bi = η′i) indicate the user

ui places her bidding budget bi respectively as ηi and η′i ,
under which the user utility vi (bi = ηi) and vi (bi = η′i) are
separately gained.

According to Definition 1, an incentive-compatible mech-
anism is supposed to be with rgti (ηi) = 0 for any user
ui ∈ U . Instead, a higher IC Regret rgti (ηi) > 0 for a user
ui implies a stronger incentive to misreport her own bidding
budget.

Proof: In order to prove the property of incentive compati-
bility, it is required to clarify that a user can only obtain the
maximum utility through truthfully placing her own bidding
budget. With no loss of generality, we choose an arbitrary user
ui ∈ U for the classified discussion, primarily in the following
two cases.

• Case 1: The service bid of user ui should be rejected
with her true bidding budget bi = ηi (i.e., ai (t) = 0).
(a) The user ui proposes an untruthful bidding budget

such that bi = η′i < ηi : The user ui with her
true bidding budget bi = ηi is rejected, because

of her unaffordability to purchase a minimum of
a−i units of cloud resources. Thus, according to the
budget-feasible guarantee, the dishonest user ui still
cannot afford herself to purchase at least a−i units of
cloud resources for the minimum QoS requirement,
hence resulting in no increase of utility gain vi (·).
Therefore, the IC regret

rgti (ηi) = max
η′i∈(0,ηi)

(
vi (bi = η′i)− vi (bi = ηi)

)
= 0

holds true in this case.
(b) The user ui proposes an untruthful bidding budget

such that bi = η′i > ηi : The user ui attempts to
have the cloud resource allocated by overstating her
bidding budget bi > ηi . Even though ai (t) > a−i
units of cloud resources are allocated through misre-
porting the bidding budget, the dishonest user ui still
cannot complete a transaction with ai (t) > a−i units
of cloud resources paid. Instead, she would be forced
to abandon the cloud migration with ai (t) = 0. After
all, an overstated bidding budget bi > ηi could not
overturn the truth that the user ui is incapable of
affording a minimum of a−i units of cloud resources.
In this way, it is true that

rgti (ηi) = max
η′i∈(ηi ,+∞)

(
vi (bi = η′i)− vi (bi = ηi)

)
= 0.

• Case 2: The service bid of user ui could be accepted
with her true bidding budget bi = ηi (i.e., ai (t) > 0).

- As stated in the Problem P1, the user ui should
purchase ai (t) units of cloud resources where her
utility vi (·) over cloud resource allocation is max-
imized. By Eq. (7), the optimal resource allocation
ai (t) that maximizes the user utility is closely asso-
ciated with her proposed bidding budget. Hence,
regardless of understating or overstating her bidding
budget, the “optimal” resource allocation ai (t) in
IaaS clouds would accordingly vary. In other words,
the “optimal” resource allocation a ′i (t) derived from

Authorized licensed use limited to: University of Exeter. Downloaded on October 25,2023 at 11:47:14 UTC from IEEE Xplore. Restrictions apply.

3470 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 3, SEPTEMBER 2021

an understated/overstated bidding budget bi
= ηi
cannot be the real-optimal resource allocation ai (t)
relating to the true bidding budget ηi . Thus, it is
concluded that

rgti (ηi) = max
η′i ∈B−{ηi}

(
vi (bi = η′i)− vi (bi = ηi)

)
< 0,

which implies that a user ui has no incentive to
misreport her own bidding budget.

Based on the above-indicated cases, we can finalize the
statement such that for any user ui ∈ U ,

rgti (ηi) = max
η′i ∈B

(
vi (bi = η′i)− vi (bi = ηi)

)
= 0,

which indicates the incentive compatibility of our resource
auction mechanism.

To summarize, our RARM mechanism provides the guar-
antee of budget feasibility, incentive compatibility, and envy-
freeness. It solves the resource pricing and demand allocation
problem with (1 + α)-approximate revenue maximization
achieved. The desired approximation ratio (1 + α) can be
discretionarily configured by the pre-defined coefficient α.

VI. PERFORMANCE EVALUATION

A. Experimental Setup

We employ simulations in this section to study the effi-
cacy of our RARM mechanism. We consider a public IaaS
cloud environment where multiple users are open to place ser-
vice bids for cloud resources and execute their applications at
the cloud. Each user proposing the service bid specifies her
service type si , which is randomly drawn from four representa-
tive data analytics applications including Classification, Naive
Bayes, Regression and KMeans. The regression coefficients
θsi ,0, θsi ,1, θsi ,2 and θsi ,3 in Eq. (3) for these four service
types are explicitly given in [52].

In the trace-driven experiments, we excerpt the 14-day tra-
jectory of VM subscription requests from the public Microsoft
Azure Cluster during November 16, 2016 to February 16,
2017 [58]. We conceive each VM subscription request as a
service bid βi , where a−i is set based on the number of vCPU
cores requested by the VM subscription request, and a+i is
scaled as 1.75 × a−i . To simplify the experiment, we ran-
domly select a fraction of 100 Azure subscribers from the
entire dataset. Fig. 4(a) demonstrates the number of service
bids placed by these 100 Azure subscribers over 14 days,
where there are 242 to 346 service bids concurrently placed
per hour. Meanwhile, we collect the Ontario’s hourly power
price from the Independent Electricity System Operator [59].
The Ontario’s hourly power prices from March 16 to March
29, 2020 are shown in Fig. 4(b).

Besides, the parameter values in Table III are adopted in our
simulations, where the source of some key values is indicated.
We set the duration τ of each time slot as one hour, according
to the minimum billing cycle of Microsoft Azure [60]. In terms
of the bidding budget, we adopt the assumption in [61] to gen-
erate the bidding budget bi (in unit of $) for each user based on
a normal distribution ((a−i +a+i)/2) ·N (0.02, 0.0152) (unless

Fig. 4. Overview of the Real-World Trace Data.

TABLE III
PARAMETER SETTINGS

specified). All the experiments are conducted on a Windows
10 computer where the processor is Intel Core i7-5500U (2
CPUs, 2.4GHz) with the RAM size of 12 GB.

B. Performance Benchmarks

Our RARM mechanism is compared against four typical
approaches, which are the heuristic-based Simulated Annealing
approach, two state-of-the-art approaches (i.e., Uniform Price
Auction, and PIRA), and a randomized baseline approach.

• Simulated Annealing [63]: This centralized algorithm is a
competitive optimization approach widely applied to the
nonlinear optimization problem. Given this, it can greatly
approximate the optimal price setting for cloud resources,
under which the CSP gains the maximum revenue from
cloud users.

• Uniform Price Auction [64]: This approach is also known
as clearing price auction, which is affiliated to the single-
price auction. The CSP prioritizes the resource demand
of cloud users with higher bid density (i.e., a+i /bi). Their
requested cloud resources (i.e., a+i) are orderly allo-
cated by the CSP, until the capacity of cloud resources
is exhausted or all service bids have been accepted. The
unit cloud resource price is single and determined by the
lowest winning bid.

• PIRA [11]: This approach solves the resource pricing
and demand allocation problem in cloud environments,
with the aim of incentivizing the maximum users served
at cloud on the premise of the CSP’s minimum profit

Authorized licensed use limited to: University of Exeter. Downloaded on October 25,2023 at 11:47:14 UTC from IEEE Xplore. Restrictions apply.

LI et al.: RESOURCE PRICING AND DEMAND ALLOCATION FOR REVENUE MAXIMIZATION IN IAAS CLOUDS 3471

Fig. 5. Bidding Budget v.s. Service Payment across Different Users.

Fig. 6. Comparative Study between our RARM Mechanism and the Uniform Price Auction [64].

rate guaranteed. In comparison with maximizing the
CSP’s service revenue, it adopts a divergent optimization
objective from this article.

• Random: This approach firstly configures a randomized
resource price p(t) within the feasible resource price spec-
trum [p(t)−, p(t)+]. Based on the randomized price set-
ting p(t), each cloud user is hereby allocated the amount
of cloud resources according to their price-incentive
resource demands.

Note that, the Uniform Price Auction approach is utilized
to conduct a comparative study with our RARM mechanism,
with the property of envy-freeness testified. The Simulated
Annealing algorithm is adopted to compare against our RARM
mechanism, further evaluating the optimality and efficiency of
our proposed approach. In terms of the PIRA and Random
approaches, they are regarded as performance benchmarks to
study the impact of the bidding budget and implement the
trace-driven experiments.

In order to reflect the randomness of auction, each experi-
ment is repeated over several times. For our RARM mechanism
and the performance benchmarks (other than Random), each
experiment result is averaged over 10 runs. Regarding the
Random approach, the experimental result is taken an average
over 100 runs.

C. Numerical Experiments

1) Validation on Budget Feasibility: We testify the budget
feasibility for the resource allocation scheme acquired by our
RARM mechanism. To validate the budget feasible resource
allocation scheme, each user’s service payment determined
by the RARM mechanism is compared with her own bidding
budget, as shown in Fig. 5. Here, we set 200 users who
concurrently place the service bid at a time slot, and the
presented experimental results are averaged over 100 runs.
It can be seen that, all of these 200 user’s bidding bud-
get is respectively sufficient to cover the service payment

of their own, further verifying the budget feasible resource
allocation.

2) Validation on Envy-Freeness: We examine the envy-
freeness for our resource allocation scheme. To better demon-
strate the related experimental results, we streamline our
simulating scenario with six users (i.e., u1 ∼ u6) concurrently
proposing service bids. We compare our RARM mechanism
with the Uniform Price Auction approach [64]. In these two
approaches, we both define the notation a

opt
i for each user

ui (i = 1, 2, . . . , 6), which implies the corresponding opti-
mum of cloud resource allocation achieving her own maximum
utility vi (·).

Fig. 6 demonstrates the comparative results between our
RARM mechanism and the Uniform Price Auction. Our
RARM mechanism always allocates the aRARM

i units of cloud
resources to each user ui , which equals to her own a

opt
i . That

is to say, each user ui obtains the amount of cloud resources
making her own utility vi (·) maximized, i.e., vi (ai (t) =
aRARM
i) = vi (ai (t) = a

opt
i). In the Uniform Price Auction,

nevertheless, the amount of cloud resources aUPA
i allocated

for each user ui is less than her own a
opt
i , i.e., vi (ai (t) =

aUPA
i) < vi (ai (t) = aopti). According to the definition of

envy-freeness, each user should always prefer her own allo-
cated amount of cloud resources to other possible allocation
results. In this case, the Uniform Price Auction approach
does not provide the guarantee of envy-freeness. Whereas, the
resource allocation scheme obtained by our RARM mechanism
is envy-free because vi (ai (t) = aRARM

i) = vi (ai (t) = a
opt
i)

for each bidding user ui .
3) Optimality and Efficiency of our RARM Mechanism:

We validate the optimality (i.e., the CSP’s service rev-
enue) and the efficiency (i.e., the algorithmic execute time)
gained by our RARM mechanism. As shown in Fig. 7,
our proposed approach is compared against the Simulated
Annealing algorithm. Both sequential and parallel execute time
are respectively measured. Unlike the centralized Simulated

Authorized licensed use limited to: University of Exeter. Downloaded on October 25,2023 at 11:47:14 UTC from IEEE Xplore. Restrictions apply.

3472 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 3, SEPTEMBER 2021

Fig. 7. Comparison of CSP’s Service Revenue, and Algorithmic Execute Time.

Fig. 8. CSP’s Service Revenue, Spot Unit Resource Price, and Number of the Accepted Bids under Different Levels x of Bidding Budget.

Annealing algorithm, our RARM mechanism supports paral-
lel execution where N(t) users concurrently calculate their
resource demands. The sequential execute time implies the
computational cost, whereas the parallel execute time indi-
cates our RARM mechanism’s actual execute time in the cloud
marketplace.

It can be seen from Fig. 7 that, the service revenue
gained by CSP increases with the number of users who
concurrently place service bids. Although the difference in
the gained service revenue between RARM and Simulated
Annealing is minimal, there is a significant quantitative dif-
ference on the sequential execute time between these two
approaches. In other words, our RARM mechanism acquires
a great reduction in the computional cost when earning the
almost-the-same amount of service revenue as the Simulated
Annealing approach. More delightfully, our RARM mechanism
is accomplished within a few seconds when conducting par-
allel execution. It means our proposed approach can shortly
complete the decision on resource pricing and demand allo-
cation at the beginning of each time slot. This is what cannot
be achieved by the centralized Simulated Annealing algo-
rithm. Despite a satisfied optimality acquired, the Simulated
Annealing algorithm is impractical in the cloud marketplace
where the time-variant decision is strictly needed. In a nutshell,
our RARM mechanism not only approximates the optimum
of service revenue as the competitive Simulated Annealing
approach, but also has the uniqueness of efficient parallel
execution.

4) Impact of Bidding Budget bi : We evaluate the impact of
bidding budget bi towards the auction results, i.e., the CSP’s
service revenue, the price setting of cloud resources, and the
number of accepted service bids. In specific, we set the bidding
budget into six levels from x = 1 to x = 6. At the bidding
budget level x, each cloud user ui places her bidding budget
bi (in unit of $) based on the normal distribution ((a−i +

a+i)/2) ·N (0.015+0.01× x , 0.0152). Here, we set 400 users
who concurrently place the service bid at a time slot.

The experimental result is given in Fig. 8. When the bid-
ding budget level x grows up, the CSP can earn much more
money from bidding users. Thus, the CSP’s service revenue
increases with the bidding budget level x, as shown in Fig. 8(a).
Our RARM mechanism always obtains the highest service rev-
enue amongst these three approaches, which coincides with
its objective of maximizing the CSP’s service revenue. As
indicated by Fig. 8(b), a higher bidding budget level also
implies a higher price setting for cloud resources. When the
bidding budget is raised, a higher cloud resource price can
effectively tighten the outspread resource demand; that is,
avoid the short supply of cloud resources. Since the PIRA
approach targets to stimulate the maximum cloud users, the
cloud resource price of PIRA approach is lower than our RARM
approach. A lower price can incentivize more users served at
the cloud, as demonstrated in Fig. 8(c). Our RARM mecha-
nism sacrifices part of cloud users to achieve the maximum
revenue from cloud users. In terms of the Random approach,
it is a process of blind price selection that gets the worst
performance.

D. Real-World Trace-Driven Experiments

In the trace-driven experiments, we perform our RARM
mechanism across 336 time slots (i.e., 14 days) on the basis
of the real-world trace in Fig. 4. The empirical results based
on the real-world trace are shown in Fig. 9, which compare
against two performance benchmarks, i.e., the PIRA and the
Random approaches.

Similar to Fig. 8(a), it can be seen from Fig. 9(a) that our
RARM mechanism gains the highest service revenue amongst
these three competitive approaches. Since the objective of the
PIRA approach is to incentivize the maximum cloud users
rather than revenue maximization, an acceptable revenue loss

Authorized licensed use limited to: University of Exeter. Downloaded on October 25,2023 at 11:47:14 UTC from IEEE Xplore. Restrictions apply.

LI et al.: RESOURCE PRICING AND DEMAND ALLOCATION FOR REVENUE MAXIMIZATION IN IAAS CLOUDS 3473

Fig. 9. Empirical Results Based on the Real-World Trace Data.

is permitted here. Given its aimless behavior, the Random
approach gains the least service revenue amongst the three
methods. In common, the service revenue earned at each time
slot jointly oscillates with the fluctuant power price and the
trajectory of service bids. On the one hand, the service revenue
gained by the CSP needs to sufficiently recoup dynamic energy
costs, together with the minimum profit rate of γ acquired.
On the other hand, the service revenue presents an overall
upward trend when more service bids are places along the
time trajectory.

Fig. 9(b) illustrates the cloud pricing results of these
three approaches, in accordance with the experimental results
revealed in Fig. 8(b) as well. When the cloud resource is
overpriced, many users with the finite bidding budget would
herby abandon cloud migration with ai (t) = 0, let alone
the objective of revenue maximization. Given this, the PIRA
approach takes as a low price of cloud resources as possible
(i.e., slightly higher than p(t)−), under which the maxi-
mum cloud users are stimulated as in Fig. 9(c). For the
sake of revenue maximization, our RARM mechanism has a
higher cloud resource price than PIRA. Because of this, our
proposed approach incentivizes the smaller amount of cloud
users than PIRA. As for the Random approach, it sets the high-
est price of cloud resources, resulting from its randomized
nature. It can be observed in Fig. 9(c) that, the rising ten-
dency on the number of accepted bids along with the 336 time
slots accords with the trajectory of service bids in Fig. 4(a).
Meanwhile, the number of active physical machines increases
with more service bids accepted by the CSP, as shown in
Fig. 9(d).

VII. CONCLUSION

In this article, we adopt the marker-oriented approach to
study the resource pricing and demand allocation problem
in multiuser IaaS clouds. In specific, we model the auc-
tion market in the IaaS cloud, where each user arbitrarily

places her service bid across time slots. Given the spot set-
ting on cloud resource price, each user is allocated cloud
resources according to her own resource demand. To gain the
maximum revenue from the finite cloud resources, the cloud
service provider determines a revenue-optimal resource price
setting. To attack the computational challenges of our rev-
enue maximization problem, we put forward a resource auction
mechanism namely RARM to make decisions on resource pric-
ing and demand allocation in an effective but efficient manner.
Our resource auction mechanism also gains the properties of
budget feasibility, incentive compatibility, and envy-freeness.
Finally, the efficacy of our RARM mechanism is validated by
extensive simulating results based on real-world data. This
work is expected to provide an efficient solution for market-
oriented resource pricing and demand allocation in the IaaS
cloud environment.

Furthermore, we are fully aware of the research limita-
tions with several avenues for our future work. Firstly, we
will design a more refined cloud resource pricing scheme
which better supports the allocation of multi-dimensional
cloud resources (e.g., CPU units, memory space, disk stor-
age). Different types of jobs have various bottleneck resources.
The bottleneck resource for computation-intensive jobs is
always the CPU unit, whereas the bottleneck for data-intensive
jobs shifts into the memory space [23]. Secondly, our RARM
mechanism proposes a general framework for cloud resource
pricing and allocation from a high-level viewpoint. In order to
make it more applicable in the realistic cloud environment,
the jobs submitted to the CSP should be further consid-
ered as the graph jobs [65] that demonstrate sophisticated
topologies. In this case, a fine-grained resource distribution
amongst nodes of graph job needs to be addressed [66].
Finally, we intend to evaluate our proposed solution in real-
life cloud systems. The experiments in practice can further
provide us with a more comprehensive understanding of
resource auction design within the realistic cloud environ-
ment.

Authorized licensed use limited to: University of Exeter. Downloaded on October 25,2023 at 11:47:14 UTC from IEEE Xplore. Restrictions apply.

3474 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 3, SEPTEMBER 2021

REFERENCES

[1] Q. Duan, Y. Yan, and A. V. Vasilakos, “A survey on service-
oriented network virtualization toward convergence of networking and
cloud computing,” IEEE Trans. Netw. Service Manag., vol. 9, no. 4,
pp. 373–392, Dec. 2012.

[2] D. S. Linthicum, “The evolution of cloud service governance,” IEEE
Cloud Comput., vol. 2, no. 6, pp. 86–89, Nov./Dec. 2015.

[3] B. Zheng, L. Pan, D. Yuan, S. Liu, Y. Shi, and L. Wang, “A truth-
ful mechanism for optimally purchasing IaaS instances and scheduling
parallel jobs in service clouds,” in Proc. Int. Conf. Service-Oriented
Comput. (ICSOC), 2018, pp. 651–659.

[4] C. Wu, R. Buyya, and K. Ramamohanarao, “Cloud pricing models:
Taxonomy, survey, and interdisciplinary challenges,” ACM Comput.
Surveys, vol. 52, no. 6, 2019, Art. no. 108.

[5] Microsoft Azure Cloud Computing Services. Accessed: May 28, 2021.
[Online]. Available: https://azure.microsoft.com/en-us

[6] Google Cloud Computing Services. Accessed: May 28, 2021. [Online].
Available: https://cloud.google.com

[7] Amazon Elastic Compute Cloud (Amazon EC2). Accessed: May 28,
2021. [Online]. Available: https://aws.amazon.com/ec2/

[8] M. Benioff and C. Adler, Behind the Cloud: The Untold Story of
How Salesforce.com Went from Idea to Billion-Dollar Company-and
Revolutionized an Industry. San Francisco, CA, USA: Jossey-Bass,
2009, pp. 103–105.

[9] J. Weinman, “The economics of pay-per-use pricing,” IEEE Cloud
Comput., vol. 5, no. 5, pp. 99–107, Sep./Oct. 2018.

[10] A. Motamedi, H. Zareipour, and W. D. Rosehart, “Electricity price and
demand forecasting in smart grids,” IEEE Trans. Smart Grid, vol. 3,
no. 2, pp. 664–674, Jul. 2012.

[11] S. Li, J. Huang, and B. Cheng, “A price-incentive resource auction
mechanism balancing the interests between users and cloud service
provider,” IEEE Trans. Netw. Service Manag., early access, Nov. 10,
2020, doi: 10.1109/TNSM.2020.3036989.

[12] IONOS Enterprise Cloud. Accessed: May 28, 2021. [Online]. Available:
https://www.ionos.com/enterprise-cloud

[13] CloudSigma. Accessed: May 28, 2021. [Online]. Available:
https://www.cloudsigma.com

[14] A. Jin, W. Song, and W. Zhuang, “Auction-based resource allocation
for sharing cloudlets in mobile cloud computing,” IEEE Trans. Emerg.
Topics Comput., vol. 6, no. 1, pp. 45–57, Jan.–Mar. 2018.

[15] S. Hosseinalipour and H. Dai, “A two-stage auction mechanism for cloud
resource allocation,” IEEE Trans. Cloud Comput., early access, Feb. 26,
2019, doi: 10.1109/TCC.2019.2901785.

[16] L. Lu, J. Yu, Y. Zhu, and M. Li, “A double auction mechanism to bridge
users’ task requirements and providers’ resources in two-sided cloud
markets,” IEEE Trans. Parallel Distrib. Syst., vol. 29, no. 4, pp. 720–733,
Apr. 2018.

[17] B. Shi, L. Huang, and R. Shi, “Pricing in the competing auction-
based cloud market: A multi-agent deep deterministic policy gradient
approach,” in Proc. Int. Conf. Service-Oriented Comput. (ICSOC), 2020,
pp. 175–186.

[18] T. H. T. Le et al., “Auction mechanism for dynamic bandwidth allocation
in multi-tenant edge computing,” IEEE Trans. Veh. Technol., vol. 69,
no. 12, pp. 15162–15176, Dec. 2020.

[19] D. Zhao, X. Li, and H. Ma, “Budget-feasible online incentive mech-
anisms for crowdsourcing tasks truthfully,” IEEE/ACM Trans. Netw.,
vol. 24, no. 2, pp. 647–661, Apr. 2016.

[20] S. Dobzinski, N. Nisan, and M. Schapira, “Truthful randomized mecha-
nisms for combinatorial auctions,” in Proc. ACM Symp. Theory Comput.
(STOC), 2006, pp. 644–652.

[21] V. Guruswami, J. D. Hartline, A. R. Karlin, D. Kempe, C. Kenyon, and
F. McSherry, “On profit-maximizing envy-free pricing,” in Proc. Annu.
ACM-SIAM Symp. Discr. Algorithms (SODA), 2005, pp. 1164–1173.

[22] M. Khodak, L. Zheng, A. S. Lan, C. Joe-Wong, and M. Chiang,
“Learning cloud dynamics to optimize spot instance bidding strate-
gies,” in Proc. IEEE Conf. Comput. Commun. (INFOCOM), 2018,
pp. 2762–2770.

[23] C. Wang, B. Urgaonkar, G. Kesidis, A. Gupta, L. Y. Chen, and R. Birke,
“Effective capacity modulation as an explicit control knob for public
cloud profitability,” ACM Trans. Auton. Adapt. Syst., vol. 13, no. 1,
2018, Art. no. 2.

[24] L. Zheng, C. Joe-Wong, C. W. Tan, M. Chiang, and X. Wang, “How
to bid the cloud,” in Proc. ACM Conf. Special Interest Group Data
Commun. (SIGCOMM), 2015, pp. 71–84.

[25] S. Hou, W. Ni, S. Chen, S. Zhao, B. Cheng, and J. Chen, “Real-
time optimization of dynamic speed scaling for distributed data cen-
ters,” IEEE Trans. Netw. Sci. Eng., vol. 7, no. 3, pp. 2090–2103,
Jul./Sep. 2020.

[26] T. Pham, S. Ristov, and T. Fahringer, “Performance and behavior char-
acterization of Amazon EC2 spot instances,” in Proc. IEEE Int. Conf.
Cloud Comput. (CLOUD), 2018, pp. 73–81.

[27] H. Xu and B. Li, “Dynamic cloud pricing for revenue maximization,”
IEEE Trans. Cloud Comput., vol. 1, no. 2, pp. 158–171, Jul.–Dec. 2013.

[28] S. Shalev-Shwartz, “Online learning and online convex optimization,”
Found. Trends Mach. Learn., vol. 4, no. 2, pp. 107–194, 2011.

[29] X. Zhang, C. Wu, Z. Huang, and Z. Li, “Occupation-oblivious pricing of
cloud jobs via online learning,” in Proc. IEEE Conf. Comput. Commun.
(INFOCOM), 2018, pp. 2456–2464.

[30] A. S. Prasad, M. Arumaithurai, D. Koll, Y. Jiang, and X. Fu, “OFM: An
online fisher market for cloud computing,” in Proc. IEEE Conf. Comput.
Commun. (INFOCOM), 2019, pp. 2575–2583.

[31] X. Wu, P. Loiseau, and E. Hyytia, “Toward designing cost-optimal poli-
cies to utilize IaaS clouds with online learning,” IEEE Trans. Parallel
Distrib. Syst., vol. 31, no. 3, pp. 501–514, Mar. 2020.

[32] K. Bonawitz et al., “Practical secure aggregation for privacy-preserving
machine learning,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Security (CCS), 2017, pp. 1175–1191.

[33] V. Cardellini, V. D. Valerio, and F. L. Presti, “Game-theoretic resource
pricing and provisioning strategies in cloud systems,” IEEE Trans.
Services Comput., vol. 13, no. 1, pp. 86–98, Jan./Feb. 2020.

[34] A. Ghosh and S. Sarkar, “Pricing for profit in Internet of Things,” IEEE
Trans. Netw. Sci. Eng., vol. 6, no. 2, pp. 130–144, Apr.–Jun. 2019.

[35] M. Siew, D. W. H. Cai, L. Li, and T. Q. S. Quek, “Dynamic pricing for
resource-quota sharing in multi-access edge computing,” IEEE Trans.
Netw. Sci. Eng., vol. 7, no. 4, pp. 2901–2912, Oct.–Dec. 2020.

[36] A. Nagurney, Supply Chain Network Economics: Dynamics of Prices,
Flows and Profits. Cheltenham, U.K.: Edward Elgar Publ., 2006.

[37] O. Shy, “A short survey of network economics,” Rev. Ind. Org., vol. 38,
pp. 119–149, Mar. 2011.

[38] Y. Narahari, D. Garg, R. Narayanam, and H. Prakash, Game Theoretic
Problems in Network Economics and Mechanism Design Solutions.
London, U.K.: Springer, 2009.

[39] J. Huang, S. Li, and Y. Chen, “Revenue-optimal task scheduling and
resource management for IoT batch jobs in mobile edge computing,”
Peer-to-Peer Netw. Appl., vol. 13, no. 5, pp. 1776–1787, 2020.

[40] C. Qiu and H. Shen, “Dynamic demand prediction and allocation in
cloud service brokerage,” IEEE Trans. Cloud Comput., early access,
Apr. 26, 2019, doi: 10.1109/TCC.2019.2913419.

[41] J. Zhang, Y. Wu, G. Min, F. Hao, and L. Cui, “Balancing energy
consumption and reputation gain of UAV scheduling in edge comput-
ing,” IEEE Trans. Cogn. Commun. Netw., vol. 6, no. 4, pp. 1204–1217,
Dec. 2020.

[42] J. Wan, R. Zhang, X. Gui, and B. Xu, “Reactive pricing: An adaptive
pricing policy for cloud providers to maximize profit,” IEEE Trans. Netw.
Service Manag., vol. 13, no. 4, pp. 941–953, Dec. 2016.

[43] H. Wang, S. Ma, C. Guo, Y. Wu, H.-N. Dai, and D. Wu, “Blockchain-
based power energy trading management,” ACM Trans. Internet
Technol., vol. 21, no. 2, pp. 1–16, 2021, Art. no. 43.

[44] B. Yin, Y. Wu, T. Hu, J. Dong, and Z. Jiang, “An efficient collaboration
and incentive mechanism for Internet of Vehicles (IoV) with secured
information exchange based on blockchains,” IEEE Internet Things J.,
vol. 7, no. 3, pp. 1582–1593, Mar. 2020.

[45] W. Zhang, Z. Hong, and W. Chen, “Hierarchical pricing mechanism
with financial stability for decentralized crowdsourcing: A smart con-
tract approach,” IEEE Internet Things J., vol. 8, no. 2, pp. 750–765,
Jan. 2021.

[46] X. Zhang, Z. Huang, C. Wu, Z. Li, and F. C. M. Lau, “Online auc-
tions in IaaS clouds: Welfare and profit maximization with server costs,”
IEEE/ACM Trans. Netw., vol. 25, no. 2, pp. 1034–1047, Apr. 2017.

[47] C. Chen, W. Wang, and B. Li, “Speculative slot reservation: Enforcing
service isolation for dependent data-parallel computations,” in Proc.
IEEE Int. Conf. Distrib. Comput. Syst. (ICDCS), 2017, pp. 549–559.

[48] H. Liang, T. Xing, L. X. Cai, D. Huang, D. Peng, and Y. Liu, “Adaptive
computing resource allocation for mobile cloud computing,” Int. J.
Distrib. Sens. Netw., vol. 9, no. 4, 2013, Art. no. 181426.

[49] C. Qiu, H. Shen, and L. Chen, “Towards green cloud computing:
Demand allocation and pricing policies for cloud service brokerage,”
IEEE Trans. Big Data, vol. 5, no. 2, pp. 238–251, Jun. 2019.

Authorized licensed use limited to: University of Exeter. Downloaded on October 25,2023 at 11:47:14 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TNSM.2020.3036989
http://dx.doi.org/10.1109/TCC.2019.2901785
http://dx.doi.org/10.1109/TCC.2019.2913419

LI et al.: RESOURCE PRICING AND DEMAND ALLOCATION FOR REVENUE MAXIMIZATION IN IAAS CLOUDS 3475

[50] M. Aldossary, K. Djemame, I. Alzamil, A. Kostopoulos, A. Dimakis,
and E. Agiatzidou, “Energy-aware cost prediction and pricing of virtual
machines in cloud computing environments,” Future Gener. Comput.
Syst., vol. 93, pp. 442–459, Apr. 2019.

[51] C. Chen, W. Wang, and B. Li, “Performance-aware fair scheduling:
Exploiting demand elasticity of data analytics jobs,” in Proc. IEEE Int.
Conf. Comput. Commun. (INFOCOM), 2018, pp. 504–512.

[52] S. Venkataraman, Z. Yang, M. Franklin, B. Recht, and I. Stoica, “Ernest:
Efficient performance prediction for large-scale advanced analytics,”
in Proc. USENIX Symp. Netw. Syst. Design Implement. (NSDI), 2016,
pp. 363–378.

[53] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

[54] J. C. Gilbert, J.-F. Bonnans, C. Lemarechal, and C. A. Sagastizábal,
Numerical Optimization: Theoretical and Practical Aspects
(Universitext). Heidelberg, Germany: Springer, 2006.

[55] Z. Zheng, R. Srikant, and G. Chen, “Pricing for revenue maximization
in inter-datacenter networks,” in Proc. IEEE Conf. Comput. Commun.
(INFOCOM), 2018, pp. 28–36.

[56] M. R. Garey and D. S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness. New York, NY, USA:
W. H. Freeman, 1979.

[57] Z. Feng, O. Schrijvers, and E. Sodomka, “Online learning for measuring
incentive compatibility in ad auctions?” in Proc. World Wide Web Conf.
(WWW), 2019, pp. 2729–2735.

[58] E. Cortez, A. Bonde, A. Muzio, M. Russinovich, M. Fontoura, and
R. Bianchini, “Resource central: Understanding and predicting work-
loads for improved resource management in large cloud platforms,” in
Proc. ACM Symp. Oper. Syst. Principles (SOSP), 2017, pp. 153–167.

[59] Electricity Pricing in Ontario. Accessed: May 28, 2021. [Online].
Available: http://www.ieso.ca/power-data

[60] Pricing Calculator—Configure and Estimate the Costs for
Azure Products. Accessed: May 28, 2021. [Online]. Available:
https://azure.microsoft.com/en-us/pricing/calculator/

[61] B. Zheng, L. Pan, S. Liu, and L. Wang, “An online mechanism for pur-
chasing IaaS instances and scheduling pleasingly parallel jobs in cloud
computing environments,” in Proc. IEEE Int. Conf. Distrib. Comput.
Syst. (ICDCS), 2019, pp. 35–45.

[62] C. Wang et al., “Recouping energy costs from cloud tenants: Tenant
demand response aware pricing design,” in Proc. ACM Int. Conf. Future
Energy Syst. (e-Energy), 2015, pp. 141–150.

[63] S. Kirkpatrick, C. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” Science, vol. 220, no. 4598, pp. 671–680,
1983.

[64] V. Krishna, Auction Theory, 2nd ed. London, U.K.: Academic, 2010.
[65] S. Hosseinalipour, A. Nayak, and H. Dai, “Power-aware allo-

cation of graph jobs in geo-distributed cloud networks,” IEEE
Trans. Parallel Distrib. Syst., vol. 31, no. 4, pp. 749–765,
Apr. 2020.

[66] M. LiWang, S. Hosseinalipour, Z. Gao, Y. Tang, L. Huang, and
H. Dai, “Allocation of computation-intensive graph jobs over vehicu-
lar clouds in IoV,” IEEE Internet Things J., vol. 7, no. 1, pp. 311–324,
Jan. 2020.

Songyuan Li (Student Member, IEEE) received
the B.Eng. and M.Eng. degrees in computer sci-
ence and technology from the Beijing University
of Posts and Telecommunications, China, in 2018
and 2021, respectively. He has published articles in
international journals and conference proceedings,
including the IEEE TRANSACTIONS ON NETWORK

AND SERVICE MANAGEMENT, the Peer-to-Peer
Networking and Applications, the International
Journal of Web and Grid Services, IEEE ICWS,
IEEE SCC, and IEEE ISPA. His current research

interests include cloud computing, edge computing, services computing,
performance evaluation, and optimization.

Jiwei Huang (Member, IEEE) received the B.Eng.
and Ph.D. degrees in computer science and technol-
ogy from Tsinghua University, in 2009 and 2014,
respectively. He was a Visiting Scholar with the
Georgia Institute of Technology. He is currently a
Professor and the Dean with the Department of
Computer Science and Technology, China University
of Petroleum, Beijing, China, and the Director of the
Beijing Key Laboratory of Petroleum Data Mining.
He has published one book and more than 50 articles
in international journals and conference proceed-

ings, including the IEEE TRANSACTIONS ON SERVICES COMPUTING, the
IEEE TRANSACTIONS ON CLOUD COMPUTING, ACM SIGMETRICS, IEEE
ICWS, and IEEE SCC. His research interests include services computing,
cloud computing, and performance evaluation. He is a Member of ACM.

Bo Cheng (Member, IEEE) received the Ph.D.
degree in computer science and engineering from
the University of Electronic Science and Technology
of China in 2006. He is currently a Professor
with the State Key Laboratory of Networking
and Switching Technology, Beijing University of
Posts and Telecommunications, China. He has pub-
lished more than 60 articles in international jour-
nals and conference proceedings, including the
IEEE/ACM TRANSACTIONS ON NETWORKING,
the IEEE TRANSACTIONS ON PARALLEL AND

DISTRIBUTED SYSTEMS, IEEE ICDCS, and IEEE ICWS. His current
research interests include network services and intelligence, Internet of Things
technology, communication software, and distributed computing. He serves on
the editorial board of the IEEE TRANSACTIONS ON NETWORK AND SERVICE

MANAGEMENT. He is a member of ACM.

Authorized licensed use limited to: University of Exeter. Downloaded on October 25,2023 at 11:47:14 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

